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FOREWORD

This is the first of three volumes describing the Performance

Analysis and Design Synthesis (PADS) computer program. This

volume is devoted to a complete program formulation. Volume II

contains programming and numerical techniques and Volume III

is a user manual.

The development of PADS was conducted by McDonnell Douglas

Astronautics Company at Huntington Beach, California, under NASA

Contract NAS9-12059, under the cognizance of Mr. Robert Abel,

NASA, MSC, Houston, Texas. The key MDAC personnel who

formulated and programmed PADS are Messrs. Murray H. Rosenberg,

John W. Hensley, and Michael Beach. Valuable programming

assistance was given by Larry Ong, Fred Gangloff, and

Sheldon Herman.
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ABSTRACT

The Performance Analysis and Design Synthesis (PADS) computer

program has a two-fold purpose. It can size launch vehicles in

conjunction with calculus-of-variations optimal trajectories and

can also be used as a general-purpose branched trajectory opti-

mization program. In the former use, it has the Space Shuttle

Synthesis Program as well as a simplified stage weight module

for optimally sizing manned recoverable launch vehicles. For

trajectory optimization alone or with sizing, PADS has two tra-

jectory modules. The first trajectory module uses the method of

steepest descent; the second employs the method of quasi-

linearization, which requires a starting solution from the first

trajectory module.
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Section 1

INTRODUCTION

The Performance Analysis and Design Synthesis (PADS) computer program

provides the capability to synthesize launch vehicle design in conjunction with

an optimally shaped and staged trajectory. It also permits generalized trajec-

tory optimization including branching for a wide variety of endo-atmospheric

aerospace vehicles.

The synthesis capability, derived from the Space Shuttle Synthesis Program

(SSSP), Reference 1, is oriented toward manned reusable launch vehicles.

However, a simplified synthesis module is available in the program which

provides a general two-stage launch vehicle design capability.

The trajectory and staging optimization portion of the program employs a

closed-loop steepest descent method for an approximate solution. Moreover,

the steepest descent solution may then be used as a starting guess for the

program's quasi-linearization algorithm which determines the exact solution

of the calculus of variations multipoint boundary value problem.

This document is the first of three volumes, and is devoted to the formulation

of PADS. Volume II is the programmers document and Volume III is the

User Manual. The bulk of Volume I is devoted to the development and dis-

cussion of the trajectory formulation. The first five sections describe the

types of simulations that are available in the program, deferring the discus-

sion of control and parameter optimization until later sections. Section 6

describes the general two-stage launch vehicle synthesis model (also called

the Phase I sizing module). Section 7 is a brief discourse on the interplay

between.the trajectory model and the Space Shuttle Synthesis Program. The

detailed documentation on this synthesis model is available in Reference 1.

Section 8 describes the auxiliary print computations that are available in the

program.
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In Sections 9 and 10 the general solution for the control vector is presented for

non-optimal situations. This leads to the key variational aspects of the pro-

gram, where optimal control and staging are formulated. Sections 11 through

15 show how the steepest-descent formulation calculates optimal steering and

parameters. These sections include discussions of the adjoint differential

equations, influence functions and numerical analysis and solution converg-

ence techniques. Section 16 presents the details of the necessary conditions

for the exact solution of the multi-point boundary value problem in prepara-

tion for a presentation in Section 17 of how the method of quasi-linearization

satisfies these conditions.
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Section 2

TRAJECTORY SIMULATION

In this section of the PADS formulation document, the earth and vehicle

coordinate systems are defined and the equations of motion are given. In

addition, the concept of the control vector, U, is defined.

2. 1 EARTH-RELATIVE COORDINATE SYSTEM

The Earth-relative flight-path coordinate system is illustrated in Figure 2-1

below. The earth model is spherical-rotating with a central-force gravita-

tional field. The origin of the R vector is geocentric.

2. 2 VEHICLE COORDINATE SYSTEM

The vehicle is treated as a point-mass moving in three degrees of freedom.

The applied load directions and control angles relative to the basic coordin-

ate system are shown in Figure 2-2. It should be noted that the vehicle

banks around the velocity vector, hence there is no yaw angle.

CR155-1

N. V

Figure 2-1. Earth-Relative Flight-Path Coordinate System
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CR155-111

Figure 2-2. Vehicle Control Angles

2. 3 EQUATIONS OF MOTION

The equations of motion in relative coordinates are derived in many other

sources. They will be presented here in engineering notation. The meaning

of various terms is given in Figures 2-1 and 2-2 and the acceleration compo-

nents depend on the simulation model.

2V = Rw cos p (cos p sin y - sin p cos ki cos Y) - g sin y

V
a
m (2. 3-1)

= W cos p[2 sin 4 + RV (cos p cos y + sin p cos q4 siny)]sin ~e 

+ cosY (- ) + R 7V V

= cos [Rw sin P sin 4'
cosy L V

V _ _ _ _ 4
- 2 cos to sin Y

+ sinp (V cosY sin ' + 2) + V
= cos = V sincos

R = h = V sin y

2-2

(2. 3-2)

(2. 3-3)

(2. 3-4)



V.
P Rcos Y cos ¢

V cos p sin q
V cos p

The rate of change of mass is

m
m = a

The equation for heating rate is

3. 15]

= QMULT [17600. r, 1 (2. 3-8)( V )\26000./

Particular terms in the above equations are

functional dependencies.

GM

R

defined below by equations or

(2. 3-9)
(EQUA3, STATEF)

The following functional dependencies are characteristic of the type of aero-

dynamic and propulsion simulations. *

LIFT: L = qSRef CL {a, MI

DRAG: D = qSRe f C
D

a, M }

BASE DRAG Db = Db{ h }

(2. 3-10)
(VT, UT)

(2. 3-11)
(VT, UT)

(2. 3-12)
(EQUA3, STATEF)

We have purposely omitted the functional dependencies of T, 8E, ca and, 0 and. a,

which will be discussed in Section 2. 4.

*T, L, and D are model-dependent force terms described in Section 3.

2-3
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(2. 3-6)
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2.4 INTRODUCTION TO THE CONTROL VECTOR

If we examine the equations of motion we find that they contain kinematic and

dynamic terms. The dynamic terms involve the applied loads. In a general

sense, the equations of motion may be expressed as

y = f{ly + G [a] (2. 4-1)

where, a, called the acceleration vector, may be defined for example as*

ta

ay
a = aq

a

T cos (a - °E) - D - Db Cos a

m

T sin (a - 6E) + L - Db sin a

m

T sin (a - SE ) + L - Db sin a

m

m

and G is a diagonal matrix whose elements are

1 0 0 0

0 1
V 0 0

10 0 
V cos ¥

0 0 0 1

The functional dependency of "a" may be expressed

a = a{T, bE' a,' , y, t} (2.

'The example given is for the single-engine moment balance simulation.

2-4

cos p

sin C

(2. 4- 2)
(ACCEL,
APPLY
VT, UT)

[G] =

0

(2. 4-3)

4-4)



Of the de'pendencies exhibited in Equation (2. 4-4), it is apparent that the

"decision quantities" are T, 6E, a, and 4.

We group these into the vector U, called the control vector

uT = (T, 6E a, ' )

and using this notation rewrite Equation (2. 4-1)

(2. 4-5)

y = f {y + [G] a {U, y, t} (2. 4-6)
(DER3A, NLDRV)

For convenience, in later discussion, the control vector may be divided into

subsets. We class T, 6 E, and a as the in-plane control vector, w, and define

the steering vector as:

T
u = (a, )

As has been described in Section 1, the purpose of the trajectory optimization

portions of PADS is to solve for the time history of U that satisfies all alge-

braic and variational problem constraints.
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Section 3

APPLIED LOADS MODELS

This section describes the various applied loads models currently available

in PADS. The applied loads are divided into aerodynamic and propulsion

models.

3. 1 AERODYNAMIC MODELS

There are three types of aerodynamic models available in PADS. These are:

(1) asymmetric linear lift variation with quadratic drag polar; (2) bivariate

tabular lift and drag coefficients as functions of angle of attack and Mach

number; and (3) static moment balance aerodynamics.

3. 1. 1 Asymmetric Linear Aerodynamic Model

The equations for total lift and drag coefficients depend on coefficients that

are input tabular functions of Mach number.

C = C
L

a + C
L L La 0

(3. 1-1)
(BEROCO,

AEROC0)

C C +k C
LD D L0

(3. 1-2)
(BEROC0,
AEROC0)

The aerodynamic lift and drag are calculated from these coefficients as:

L = C L q SRE F
(3. 1-3)

(VT, UT)

D = C D q SRE F
(3. 1-4)

(VT, UT)
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where

q = 1/2 p V 2 (3. 1-5)
(EQUA3,

STATEF)

3. 1. 2 Nonlinear Aerodynamics Model

The nonlinear aerodynamics model employs bivariate tables of lift and drag

coefficients as functions of angle of attack and Mach number. These tables

are fitted with bicubic spline functions to yield continuous first, second,and

mixed partial derivatives during program execution. (BLYNE, BLICO, BLINE)

3. 1. 3 Base Drag

Base drag, Db, in the program is a function of altitude. It is an input uni-

variant table.

3. 1. 4 Moment Balance Aerodynamics Model

The moment balance aerodynamics model includes the effect of aerodynamic

and propulsive moment balance trim forces on the overall applied loads. The

distribution of trim between aerodynamic and propulsive is accounted for

through a blend factor, j. The moment balance diagram for this model is

given in Figure 3. 1-1.

Asymmetric linear aerodynamics are employed with the addition of aero-

dynamic moments.

The uncorrected lift (untrimmed lift) is

CL =(C L a + CL) (3. 1-6)
(AEROCO,
BEROCO)

Lu = C L qSRef
u

(3. 1-7)
(VT, UT)

The equation for drag is

CD = CD +k(CLu)
0 u

(3. 1-8)
(AEROCO,
BEROCO)

3-2



CR155-1

z

A LT

XCGR

- CG

XE

XT

Figure 3.1-1. Moment Balance Diagram-Body Station Coordinate System

D = C D q SRef

.T

X

(3. 1-9)
(VT, UT)

The aerodynamic moment calculation assumes linear variation of moment

coefficient with angle of attack.

( a + C c ) q SRef dRef (3. 1-10)
(/a '(o 0) Rf e(MOMECO,

MAMECO
UT, VT)

The moment coefficients C, and Cub are defined for moments about the
a 0

reference center-of-gravity location (XcGR, ZCGR) only. The actual center-

of-gravity location is an input tabular function of vehicle weight.

XCG = XCG (W) and ZCG = ZCG (W) (3. 1-11)
(EQUA3,
STATEF)

3-3



In developing the equation for the total aerodynamic moment around the

instantaneous vehicle center of gravity, the following assumptions are made.

A. The base drag acts parallel to the vehicle axis and is centered at

station ZBD

B. The axial contribution of aerodynamic trim force may be neglected.

This assumption is very good for aerodynamically stable airframes

with trim surfaces aft of the center of gravity. The assumption is

poor for moderate to highly unstable or extremely stable airframes

since in either case, induced drag changes due to trim deflection

should then be accounted for.

C. The aerodynamic lift coefficient slope, CL , should be fitted to

vehicle data without aerodynamic trim surface deflection

(untrimmed).

The untrimmed moment about the center of gravity is (approximately)

/CG = (Lu cos a + D sin a) (XcG - XCGR)

- (D cos a - Lu sin a) (ZCG - ZCGR)

+ (C, +C a ) q SRef dRef + DB(ZBD-ZCG) (3. 1-12)
\o ~a / (VT, UT)

To distribute the trim force between the aerodynamic trim device (tail) and

the engine thrust gimbal contribution, the blend factor, j, is used. j is an

input function of dynamic pressure, q.

j = j (q) (3. 1-13)
(EQUA3,
STATEF)

The tail contribution then is

(XT - XCG) ALT = jCG (3. 1-14)

3-4



ALT = -j cCG
XT - (XT -XCG) (3. 1-15)

(VT, UT)

The corrected or total lift then becomes

L = Lu + AL
TUT (3. 1-16)

(VT, UT)

The engine thrust contribution is

(XE - XCG) sin 6E -(ZE - ZCG) cos 6E I T = (1 - j)'CG (3. 1-17)

The equations above are employed in developing the governing equation set, K,

for the in-plane control vector, w. The solution procedure is described in

Section 9.2.

3. 2 PROPULSION MODELS

Four propulsion models are employed in PADS. The first is a simple

rocket model using input vacuum thrust with optional throttling and comput-

ing fuel flow. The second, for use with the SSSP sizing module, simulates

two engines with different Ip 's, with optional throttling. The third model is

an air breather simulation. The fourth model has dual parallel-burn engines.

3. 2. 1 Simple Rocket Model

The rocket vacuum thrust per engine, FVAC' may be input as a tabular func-

tion of burn time or as a constant. The net thrust of the vehicle may then

be calculated as:

T [ VAC - AEXIT a x TMULT (3. 2-1)
(EQUA3,

STATEF)

3-5

or



where

AEXIT is the nozzle exit area,

Pa is ambient static pressure,

TMULT is the number of engines or thrust multiplier.

The vehicle rate of change of mass may then be calculated.

FVAC TMULT
m = _

sp gr
(3. 2-2)

(ACCEL,
APPLY)

When acceleration limit throttling is employed, the net thrust, T, is computed

using an appropriate governing equation (K) so that the total vehicle accelera-

tion is bounded. The total vacuum thrust may then be calculated

TVAC T + AEXIT Pa TMULT (3. 2-3)
(TH, FH)

If no I loss table has been input, the vehicle rate of change of mass is then
sp

TVACm = -I g
sp r

(3. 2-4)
(ACCEL,
APPLY)

If on the other hand, an I loss table
sp

%Isp Isp (F ATED x100 x . 01
TvRAT ED

(3. 2-5)
(IMPUL,
IMPULS)
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has been input, the effective I
SPeff

will be used and

I = I x %ISP ( VAC
Speff spFrated

TVAC
m = -

I grSPeff

where F rated is either input as a constant or interpolated from the input thrust

table at the initiation of the thrusting (initial burn time).

3.2. 2 Dual Engine Model

The dual engine model used with SSSP sizing problems first calculates the

effective I of the two engines with TVA and TV A their rated vacuum
levels

thrust levels.

T V =T +T
VAC VAC1 VAC1 A 2

(3. 2-8)

S IS (TVAC + TVAC2)

sp T I +T IVAC sp
2

VAC2 sp 1
1 2 

(3. 2-9)
(ISPRAT)

This model assumes that only the second engine may have time-varying thrust

(table input) or may be throttled. The net effective Isp for the system will

change if this is permitted. We define A
e

as the net nozzle area and given

the net instantaneous thrust T, we may calculate the ratio of actual vacuum to

rated vacuum thrust of the two engines,

3-7

and

(3. 2-6)
(IMPUL,
IMPU LS)

(3. 2-7)
(ACCEL,
APPLY)



T + Ae Pa

TVAC + TVAC 2

(3. 2-10)
(ISPRAT)

We also define

I
SP2

K t = _p
I
Sp 1

(3. 2-11)
(ISPRAT)

We may then calculate the ratio of instantaneous I
sp

Equation (3. 2-9).

I I
sp _

I
sp

to that defined in

TVAC 1 TVAC2

(K' + R' - 1) TVAC + R TVAC
L 1 2 j

(3. 2-12)
(ISPRAT)

The equation for effective I and its partial derivatives are programmed in

subroutine ISPRAT. The program logic is designed to parallel the I loss
sP

table results by using the same type of dependencies; that is, the result of

both calculations is the percent I as a function of percent rated thrust.

3. 2. 3 Air-Breather Propulsion

The air-breather propulsion model employs bivariate tables of thrust, T, and

specific fuel consumption, SFC, as functions of relative velocity, V, and

altitude, h. The SFC is in the units of fuel per lb-thrust per hour. The rate

of change of vehicle mass may be calculated as follows:

(SFC) T
gr 3600 (3. 2-13)

(ACCEL,
APPLY)

3. 2. 4 Parallel Burn Propulsion Model, JPR( = 3, JAER = 3

The configuration of the parallel burn model is shown in Figure 3. 2-1. In the

equations, all aerodynamic coefficients are functions of Mach Number, M.
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LUz

XCGR

XCG

XT

XE2

E1

Figure 3.2-1. Parallel Burn Configuration

Aerodynamic lift (untrimmed):

Lu= (CL a + CL) q SRef

Drag coefficient:

CD = CD + k (L )

Aerodynamic moment:

Ma = (C. aa + o) q SRef dRef

Center-of-gravity dependency:

ZCGG = ZCG (W)

CR155-111

(3. 2- 14)

(3. 2-15)

(3. 2- 16)

3-9

(3. 2- 17)
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where W is vehicle total weight

XCG = XCG (W)
(3. 2-18)

For this model, base drag is centered at station ZBD.

The total untrimmed moment, -4CG, about the instantaneous center of gravity

depends on which engine is being gimballed or whether both engines are

gimballed. Assume the p engine, having thrust Tp, is not gimballed but has

fixed engine deflection, 6 E Then

MCG = (Lu cos a + D sin a) (XcG - XCGR)

- (D cos a - Lu sin a) (ZcG - ZCGR) +Y a + DB (ZBD- ZCG)

-(ZE -ZCG) Tpcos 6E +(XE - XCG) Tp sin 6 Ep

(3. 2-19)

If both engines are gimballed, the last two terms involving Tp are excluded.

The tail contribution to balance the moment depends on the blend factor

j = j (q), where q is the dynamic pressure (=

p
V2)

J = CG
A

T
(X T - XCG)

(3. 2-20)

For one-engine fixed, the gimballable engine deflection for engine y required

to balance the remainder of the moment is:

[(XE -XCG) sin 5 Ey (ZEy
y y y¥

- ZCG) cos E ] Ty = (1-j)CG

(3. 2-21)

If both engines are gimballed, we have

[Tp (XE. - XCG) + Ty (XE y XCG)] sin E

- [Tp (ZE ZCG) + Ty (ZE¥- ZCG)] cos 6 E = (l-j)A4CG

3-10
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This completes the governing equation for engine-deflection solution. It
remains to describe the applied-load terms in the equation of motion. The

general form is

r = f(y) + Ga (3. 2-Z3)

where f (y) are the applied-load independent terms, G is a diagonal matrix of

applied-load independent multiplying factors, and a is the acceleration vector

having elements

a(3. 2-4)

and

diag [G] = 1, V IV, v cosy' 9 (3. 2-25)

The equations for the first three elements of a are

Va

T1c os (a+6E) + T 2 cos (a+ 6 E) - D - DB cos a

m

let

a T 1 sin (+ E) + T 2 sin ( +E ) + L - DB sin a

m

then

aY X
aY = a cos ¢

a X n a
d~ = a sin,

3-11
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(3. 2-27)

(3. 2-28)
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mThe equation for a depends on T and T 2 . (Note: T. may not be throttled)I T

m. T1 T 2

ISP1 ISP2 (3. 2-30)

where

T 1 and T
2

are functions of t

and

ISP 1 and ISP2 are constants.

3. 3 ATMOSPHERIC MODELS

Three atmospheric models are available in PADS:

A. 1962 standard

B. 1963 Patrick AFB

C. Vacuum.

3. 3. 1 1962 Standard Atmosphere

The 1962 Standard Atmosphere model is a coded version of the analytic

representation of Reference 2 up to 195 km. Above 195 km, a 50-point

weighted least squares polynomial extends the range of data to beyond the

altitudes of interest. This model is contained in subroutines ANLATM in

the steepest descent portion of the trajectory module and in ANL62S in the

quasi-linearization portion.

3. 3. 2 1963 Patrick AFB Model

The 1963 Patrick AFB model is described in Reference 3. It employs 14th-

order polynomials for atmospheric properties up to 400, 000 ft.
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Section 4

AERODYNAMIC HEATING MODEL

The aerodynamic heating model employed in PADS calculates the stagnation

heating rate on a spherical nose cap. The equation is

17600 Pa 1/2 V )3. 15
- ML= I nserds(b) (60 D 3, R(4-1)

h ·MULT 1760 ( ) P26000'(DE) IA, NLDRV),T Vnose radius 'b ) (DER3ANDV

where the nose radius is assumed to be 1 and Pb is the base density of the

atmosphere model. )MULT is an input flag having a value of either 1. or

zero depending on whether the heat load should be calculated in that portion

of the trajectory. MULT is necessarily an arc-dependent flag.i ~ MULT
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Section 5

MISSION CAPABILITIES

The mission capabilities of the trajectory program are described in this

section. These mission capabilities are, in a mathematical sense, the

boundary conditions on the multi-point boundary value problem. By way of

introduction to these boundary conditions, some definitions will be useful

in later discussions of the calculus-of-variations formulation (see

Section 17).

There are two types of boundary conditions, initial conditions and targets.

Initial conditions apply to the beginning of an arc whereas targets occur only

at the end of an arc. Several types of initial conditions can occur in a

problem. These are

A. Fixed initial condition

Yi = (known value) (5.0-1)

where Yi is element of the state vector.

B. Continuous initial condition

Yi T + = Yi IT- (5. 0-2)

where I T denotes the arc end point

C. Known or computable mass discontinuity

ml IT+ = mI T- -Am (5. 0-3)

D. Mass distribution

Let superscript 1 denote branch one and superscript 2 denote

branch two. Then

m T+ + m T+ = m (5. 0-4)
M ITI+ I T+ T-
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The target conditions that can be met are described in the remainder of this

section. These targets are divided into ascent, entry, or auxiliary boundary

conditions. In addition to those described, it should be noted that the rela-

tive state vector is also a set of candidate targets. It should also be noted

that all targets described are functions of the relative state and time only.

5. 1 ASCENT BOUNDARY CONDITIONS

The orbital parameters are illustrated in Figure 5-1, programmed in PDBC

and PDBCQL, and listed below.

CR155-1

PLANAR ELLIPTICAL

P, SEMI-LATUS RECTUM

Rp PERIGEE

R a APOGEE

= Rp + Ra SEMI-MAJOR AXIS

2

ea - Rp ECCENTRICITY
Ra+ Rp

H =VG/p-

E = 2 GM/a, TRUE ANOMALY = TAN 1 (TAN Y )

/ I INCLINATION
I n ~LONGITUDE OF

ASCENDING NODE

/ \ ARGUMENT OF PERIGEE

Figure 5-1. Orbital Parameters OUT-OF PLANE
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A.. Inertial velocity

VI = 4 V2 + 2c cos p V cos y sin p + (o cos p)2

B. Inertial path angle

YI = sin (V sin y /VI)

C. Inertial azimuth

= tan 1 (V cos sin O+ o0 cosp

D. Inertial longitude

I = +W te

E. Semi-latus rectum

R V
I

cos y
P =

r GM

F. Orbital eccentricity

Let

2
RV

Z=
GM

e = |1 - Z (2-Z) cos 2 YI

G. Orbital inclination

i = cos (cos p sin pI)
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H. Argument of perigee

I
1

cos 1 Pr -R

p ~\sin i / ER

I. Longitude of the ascending node

= I sin- sin-41I s i n
p

sin i

J. Semi-major axis

R GM
a =

s 2 GM - RV1

K. Apogee radius

R = a (' + e)

L. Perigee radius

R = a (1 -e)
p s

M. True anomaly

= tan ( )

Pr

The following three parameters are applicable to asymptotic injection. The

parameters are illustrated in Figure 5-2.

P rA. X=
e

pre
B. Y =

V'l - e'
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CR155-1

O ASYMPTOTE
Y NORMAL DISTANCE

X HYPERBOLA AXIS DISTANCE

Figure 5-2. Asymptotic Parameters

Figure 5.2. Asymptotic Parameters

C. =o s-1 ( 1

Two additional orbital parameters are energy and momentum.

A. Energy

E 2 GM
a

B. Momentum

H = R V
I

cos YI

5.2 ATMOSPHERE ENTRY MISSIONS

Figure 5-3 illustrates the how total range, downrange, and cross-range are

defined.

CR155-1

r

r
P =d r =

P =

SD =

SC =

ST =

REFERENCE LONGITUDE

REFERENCE LATITUDE

REFERENCE AZIMUTH

VEHICLE LONGITUDE

VEHICLE LATITUDE

DOWNRANGE

CROSS-RANGE

TOTAL RANGE

Figure 5-3. Range Targets

5-5

~D



The equations for these are given below:

A. Downrang e

E -1 cos Pr (sin p cos Pr - cos p sin Pr cos A}l) + sin 'r cos p sin a/t

SD =Rtan Lsin p sin Pr + cos p cos Pr cos a j

where ZAk = L- -r and the 'r' subscript means reference point.

B. Cross-range

SC = ER sin
1

cos ,r cos p sin L - sin q (sin p cos p- cos p sin pr cos 'n)]

C. Total range

ST = ER cos [sin p sin Pr + cos cos p r cos A

5.3 AUXILIARY BOUNDARY CONDITIONS

Additional boundary conditions in PADS for various purposes are given

below.

A. Dynamic pressure

Pa 
V

2
q= 2

B. Heating rate

M= QMULT 76 ( 00 (26 ) 15

C. Reynolds number (unit)

V
R =
ey v

The payload boundary condition equations are described in Sections 6 and 13.
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Section 6

PHASE I SIZING

There are six sizing options in the Phase 1 sizing. These options are:

1. Maximize payload or burnout weight with fixed initial weight

2. Minimize lift-off weight with a fixed payload

3. Minimize lift-off weight with a fixed payload and second stage

4. Minimize lift-off weight with a fixed payload and first stage

5. Maximize payload or burnout weight with a fixed (T/W)L O and

thrust

6. Maximize payload or burnout weight with a fixed (T/W)L O. and

initial weight

Each option is solved in its own subroutine and discussed below.

6. 1 OPTION 1

The equations for sizing option 1 are based on the initial weight and the mass

ratios that come from the trajectory program. The booster propellant weight

is given by

W =W ( B) (6. 1-1)
.L.O. IBPB B

and the burnout weight by

BO L. O. PB (6. 1-2)

The orbiter inert weight is determined from either a tabular input of the

booster stage weight or from the following expression for this parameter

W = a +a w + a2 w / a3 w (6. 1-3)
e B 1 PB P
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or

W = f (W )
b PB

Then,

o BO - We

The rest of the stage parameters are known.

(6. 1-4)

6.2 OPTION 2

The second option requires the sizing to be done from the top down. The

orbiter mass ratio is determined from

AVTOT - gr IspgB n([LB) /
.o 

= exp . grIp
gr IsPo

(6. 2-1)

and the propellant weight is given by

WP ( -I) PL ) (6. 2-2)

where

W =b +b We o 1
o

+ b W 1/3 + b3 W 2/3
pO 2 p 3 P

or is input via tabular data.

The orbiter initial weight is given by

W = W
o P0

Po

+ W + PL
e

o

(6. 2-3)

(6. 2-4)
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The booster weights are determined from

PB (1B 1) (W + WeB) (6. 2-5)

W =W +W (6. 2-6)
BO o eB

B
and WeB is determined from Equation (6. 1-3) or tabular input. The lift-off

weight is given by

WL.O. = B WBO (6. 2-7)

6.3 OPTION 3

The option 3 sizing starts with the determination of the orbiter gross weight

W = W + W + PL (6. 3-1)
o P e

These quantities are input.

The booster mass ratio is given by

VTOT - grlsp In L e 

B=EXP - (6. 3-2)
B grlsPB

The propellant weight is given by

PB (WBl) (w 0 WB) (6. 3-3)
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where WeB is given by Equation (6. 1-3). The booster burnout weight is

determined from

WBO W+ W (6. 3-4)
BO o e B

and the booster lift-off weight by

WL.O. = [B WBO (6.3-5)

6.4 OPTION 4

This sizing option requires the minimization of the lift-off weight. The

booster lift-off weight is given by

WL.O. W ( ) (6.4-1)
L. 0 PB ['B

- 1

I

and the burnout weight by

WL.O.
BO WL. O. (6.4-2)

WBO = B

The orbiter initial weight is given by

W =W - W (6.4-3)o BO e B

where WeB is determined from Equation (6. 1-3).

An iteration is required to determine the orbiter size to complete the mis-

sion with the fixed payload. The following equations are solved iteratively

until the payload error, E , is within tolerable limits.

. = EXP g (6.4-4)
r sp0 

64



W

o wo

W
Po

= W - Wf
0 fO

0

e f (Wpo) or (6. Z-2)
e0

PL = Wf
o

- W
e

o

PL PLFIXED

The following test is made

ifPL < PLFIXED; 1B = B - E go to (6.4-1)

PL = PLFIXED; EXIT

PL > PLFIXED; LB = [B + E go to (6.4-2)

6. 5 OPTION 5

This option takes advantage of the equations derived in Section 6. 1.

lift-off weight is determined from

N (TVAC Ae Pa)
LO (T/W)

and Equations (6. 1-1) through (6. 1-4) are solved.

6-5
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(6.4-6)

(6. 4-7)

(6.4-8)

(6.4-9)

(6.4-10)

The
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6.6 OPTION 6

Option 6 also takes advantage of Equations (6. 1-1) through (6. 1-4). The

trajectory thrust is modified by

TVAC = () (WLn) + Ae Pa (6.6-1)

6.7 PAYLOAD BOUNDARY CONDITIONS

The payload.boundary condition is available in the trajectory module of

PADS for use with Phase I sizing problems. This boundary condition is

employed for optimal staging problems (rubber stage). The equation for

payload boundary condition is the same as Equation (6.4-8). The implica-

tions of rubber-stage optimal staging are described in Section 13.
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Section 7

INTERFACE WITH SPACE SHUTTLE SYNTHESIS PROGRAM

As was mentioned in Section 1 of this volume, the manned reusable launch

vehicle synthesis is performed by the SSSP module in PADS. The synthesis

modeling and equations remain essentially the same as documented in Ref-

erence 1. There are, however, some minor model changes and program-

ming changes. The model changes will be discussed below. The

programming changes, which are mostly related to data communication,

are listed herein and discussed in Volume II of this report.

7. 1 THRUST SIMULATION CHANGE

The thrust simulation available in the original SSSP program is completely

dependent on its trajectory module (GTSM). In PADS, the thrust simulation

is likewise related to the TABTOP trajectory module. This thrust simulation

is described in Section 3.2 of this report. The information on thrust and fuel

flow values must be transferred to the SSSP program in order to calculate

fuel weights. This calculation of fuel weights and related quantities is per-

formed in a new subroutine called THRUST.

7.2 ENVIRONMENTAL EFFECTS ON DESIGN

A new thermal protection system weight estimation equation has been added

to the SSSP module. It has the form

r r
2

WTPS = (QL) 1 (tL) C + CTP (7.2-1)

where CTp1 and CTP2 are input coefficients and r 1 and r2 are input

exponents. QL is the effective heat load (Btu/ft2 ) on the entry portion of

the trajectory. The effective heat load, 0QL is computed by considering
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the integral of 6 only when Q is above an input threshold value, QTh

t
2

O L =f
tI

Q dt (7. 2-2)

(7. 2-3)

The quantity tL in Equation (7. 2-1) is

tL = t2 - t1

meaning the duration when 0 is greater than QTh.

A familiar configuration of coefficients for TPS design is

r = 1/8

r
2

= 3/8

(7. 2-4)

CTP
1

CTP2

= 1.

- 0.

7.3 HUNTING PROCEDURE

A parameter hunting procedure for solving bounded optimization of up to

10 design parameters used in SSSP design synthesis is available in PADS.

The technique employed is called Powell' s method, originally published in

Reference 4. Bounding of free parameters is accomplished through the

Box transformation of Reference 5.

Briefly described, the method required no gradients and employs a conjugate

direction quadratic ray search to find a minimum. The equations and pro-

gramming logic for subroutine POWELL are presented in detail in Volume II.
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7.4 MISCELLANEOUS CHANGES

Following is a list of key programming changes in SSSP:

A. Input data communication

B. Merging of fly-back range calculations

C. Trajectory program communication

D. Output format

E. Sizing options for solids.
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Section 8

AUXILIARY PRINT COMPUTATIONS

This section will detail the auxiliary computations required at each print

point. They consist of the instantaneous impact points, inertial Cartesian

coordinates, Euler angles, steering angles, and some orbit parameters.

8. 1 ADDITIONAL ORBIT PARAMETERS

The majority of the orbit parameters printed at each time point are calcu-

lated as described in Section 5. Three parameters printed are not calculated

in that section. They are the apogee and perigee velocities and the orbit

period. They are determined from the following equations.

V GM 2 (8. 1-1)
A R a

R
Va VA (8. 1-2)VP R A

a
T = r GM (8. 1-3)GM

8. 2 INSTANTANEOUS IMPACT POINT

The instantaneous impact point (IIP) is that point on a spherical earth where

the vehicle would impact if it continued on its current path. The solution

assumes unpowered vacuum flight on a Keplerian orbit.

Certain quantities are calculated and tests are made before the IIP can be

calculated in subroutine CRASH. The first test is made to determine if the

orbit will intersect the earth. If the perigee radius is greater than the earth
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radius, the orbit does not intersect the earth and a message is printed. If

the apogee radius is less than the earth radius, an error has been made

and a message is printed.

The current true anomaly, Y., is given by

Pr/R - 1
cos 6 = ee

The true anomaly at the impact point is given by

P r

R
cos HP ee

The

by

(8. 2-1)

(8. 2-2)

eccentric anomaly at the current position and the impact point are given

cos E = - e + cos A
1 + e cos A

si - e I sin 
1 + e cos I

E tan- 1 ( sin E )Cos n 

(8. 2-3)

(8. 2-4)

(8. 2- 5)

The impact velocity is given by

V =IV + GM ( ER (8. 2-6)

The impact elevation angle is given by

cos =
R V

I
cosY I

ER VIIp

8-2

(8. 2-7)



The true anomaly to the impact point is

lip

The geocentric impact latitude is given by

sin PIIP = cos p cos %1 sin [ + sin p cos p

The azimuth angle at the impact point is given by

sin -IIP

cos p sin %I

cos PIIP

cos s sin PIIp - sinp

sin ,

Cos P IIp

tUP =sin nIIPs ) (8. 2-12)

The longitude increment from the burnout point to the impact point is

sini =

cos =

sin , sin %IIP

cos PIIp

cos 5 - sin p sin PlIP

cos p cos PIIp

(8. 2-13)

(8. 2-14)

tan-1 (sin )
(cos L 

(8. 2-8)

(8. 2-9)

cos qIIP

(8. 2-10)

(8. 2-11)

(8. 2-15)
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The eccentric anomaly at the impact point is given by

sin E P"IP

cos EIPP =
e + cos t HP

1 + e cos tIIP

i1 lsin EII
p

IIP cos E

The time to impact is based on the difference in the time since perigee as

determined at the burnout point and at the impact point. These times are

given by Kepler's equation as follows:

To = X (E - e sin E)

TIIP = X (EiiP - e sin EiP)

(8. 2- 19)

(8. 2-20)

where

T as
X = 2 = - GM

The time to the impact point from burnout is thus given by

The time to the impact point from burnout is thus given by

IIP o

(8. 2-21)

(8. 2-22)
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(8. 2-18)
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and

- -T + T if <oo. (8. 2-23)

The impact longitude is given by

4IIP = Fo - + (8. 2-24)

The impact time is given by

TII p = T + T (8. 2-25)lIP o

The range to the impact point is

S = ER 5 (8. 2-26)

The range from the reference latitude and longitude point is given by

cos X = cos R cos PP cos (R - IPP) + sin PR sin P (8. 2-27)

-1
SLiP = E R cos (cos X) (8. 2-28)

The azimuth angle from the reference point to the impact point is given by

[ sin (~R - "IIP)

2 z- IS in l -() II J

(8. 2-29)
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However, if

PIIP < PR: AIIP

(1R - ~IIP ) = 0 and
PIIP > PR: A*IIP = 0 (8. 2-30)

or, if

PIIP < -PR: A*iP T

(IR - IIP) = w and 

PIIP - PR: AIP =

These quantities define the attitude and position of the vehicle at the impact

point.

8.3 INERTIAL CARTESIAN COORDINATES

The inertial Cartesian coordinates are determined from the inertial longi-

tude, the current latitude, and the radius to the vehicle. The Cartesian frame

has the following as its primary planes; the equatorial plane, the plane through

the launch site and the north pole, and a plane perpendicular to these planes.

The position transformation is given by

X
I

= R cos p cos LI (8. 3-1)

YI = R cos p sin aI (8. 3-2)

Z
I

= R sin p (8. 3-3)

The velocity transformation is obtained by differentiation of the above equa-

tions to give

XI R- cos p cos BI - R p sin p cos 'I - RI cos sinin BI (8. 3-4)
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YI = R cos p sin 
I

- Rp sin p sin EI I + R'I1 cos p cos I- (8. 3-5)

* (8. 3-6)ZI = R sin p + R p cos p

where

R = V sin Y (8. 3-7)

V
P = cos Y cos P (8. 3-8)

V cosY sin L

(8. 3-9)R cos p

8.4 RELATIVE EULER ANGLES

The relative Euler angles of the vehicle axes are obtained from the vehicle

state by establishing a Cartesian coordinate system at the vehicle center of

gravity and performing the following rotations in order:

1. Rotate about the z axis through the azimuth angle qi.

2. Rotate about the y axis through the flight path angle Y.

3. Rotate about x through the bank angle i.

4. Rotate about y through the angle-of-attack, a.

The matrix product of these rotations results in the matrix of direction

cosines between the vehicle axes and the relative Cartesian set.

cos a 0 sina /1 0 0 cosY 0 sinY cos + sinP 40

D = (Direction 0 1 0 0 cos sin O 0 1 0 sin 4 cos Jo 0
Cosine )R= (8, 4-1)

-sina c0 O sin / cos/ a \-sin 0 cosY ) os0 1 O

Given the direction cosines, the Euler angles are calculated in subroutine

DCTOE for both yaw-pitch-roll and pitch-yaw-roll sequences of rotation.

The equations for these angles are YAW, PITCH, ROLL

ePITCH = tan -1 D (1, 3) )(8.4-2)

~1 - D (1, 3)
2
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e tan (D 2)) (8.4-3)
YAWW D (1, [)

e = tan- D (2 3) (8.4-4)

PITCH, YAW, ROLL

eYW =tan1 (D (1, 3) (8.4-5)

8yAw = tan1 ( -D (12)) (8. 4-6)-1 D (1, 2)0 YAW tan (8.4-6)

- -D (2, 2)
e - 1 -D (3, 2 (8.4-7)

ROLL D (Z, 2)

where D (I, J) is a location in the direction cosine matrix given in

Equation (8.4-1).

8.5 INERTIAL EULER ANGLES

The inertial Euler angles are obtained by a right multiplication of the relative

direction cosine matrix [(Equation (8. 4- l)]by the transformation

cos p sin j 0

D' = -sin 1i cosp [ 0 (8. 5-1)

0 0 1

to obtain the matrix of inertial direction cosines

(direction (direction (D') (8. 5-2)
cosines cosines

I R

The same equations used to determine the relative Euler angles (subroutine

DCTOE) are used to determine the inertial Euler angles from

Equation (8. 5-2).
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8.6 STEERING ATTITUDE ANGLES

Two steering attitude angles are calculated for output. The first angle is the

elevation angle from the local horizontal to the vehicle centerline in the

plane determined by the local vertical and the velocity vector. The second

angle is the azimuth angle measured from north to the vehicle centerline

projection on the local horizontal plane. The equations for these angles

are:

p = y + sin1 (sin a cos ~) (8. 6-1)

Oe = J + sin
-
1 (sin a sin+) (8. 6-2)
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Section 9

CONTROL VECTOR SOLUTION - NON-OPTIMAL CONTROL

To integrate the equations of motion it is necessary to know the control

vector

U = (T, 6 E' ) (9. 0-1)

Because we are concerned with endo- as well as exo-atmospheric trajec-

tories, this can be a formidable problem, even if we overlook the added

complication of determining the optimal steering angles, a and 4. (See

Sections 11, 12, 16, and 17 for discussion of this problem.)

For example, suppose we want the vehicle to perform a "gravity turn" while

it balances its aerodynamic moment and, at the same time, conforms to a

total acceleration limit (not an unlikely circumstance). Under these condi-

tions, none of the in-plane control quantities, T, 6 E, or a, can be explicitly

evaluated; each is dependent upon the other two. In other words, we are

confronted with a situation that requires the solution of a system of nonlinear

simultaneous algebraic equations. Were this the only example in which this

predicament arose, it would be of little burden, but, unfortunately, it is

only one of many.

The difficulty of the problem is compounded by the fact that the governing

conditions may change at any time. For example, the thrust may have to be

instantaneously throttled in order to satisfy a total acceleration limit, or

the angle of attack may have to switch from one mode of flight to another.

Hence, to determine the vector U, the above difficulties compel us to adopt

the rather oblique and formalistic approach described below. In doing so, we

reap at least one important supplementary benefit - later program modifica-

tions will be greatly facilitated by the formalism we introduce now.
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9. 1 NON-OPTIMAL BANK ANGLE

Presently, there are only two non-optimal conditions for the bank angle, ~.

One of them is that ~ = 0. The other is the vertical rise/pitchover mode.

In both cases, an explicit equation for ~ can be obtained. In the former

case it is simply

(9. 1-1)

and, in the latter, it is

) = tan
-

1 (kj/ky)

where

k = V cos ¥ sin p R cosY
sin k + 2wo)

+ w cosp (R o sinp sin LP - 2V cos 4 sin Y ) (9. 1-3)

and

+ W cos p [2V sin i + R w (cos p cos Y + sin p cos t sin Y )]

(9. 1-4)

As a result, we can exclude this component of the U vector from the formal-

istic treatment and restrict our attention to the problem of determining the

in-plane control vector

w = (T, 6 E a)T

(9. 1-2)

(9. 1-5)
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9.2 IN-PLANE CONTROL DETERMINATION WHEN a IS
NON-OPTIMA L

Suppose the vehicle is at some arbitrary point of a non-optimal portion of its

flight. Let

K = (K1 , K 2 K 3 )T (9. 2-1)

be the system of governing equations for the choice of w at this particular

point. In general, K will be a function of the state and the in-plane control;

i. e.,

K = K (y, w) (9. 2-2)

The in-plane control vector (value of w) will be determined by solving:

K (y, w) = 0 (9. 2-3)

To do so, we make use of the well-known Newton-Raphson iteration, which

runs as follows:

Starting with some initial guess for w, e.g., w
o
, compute an increment

Aw from the equation

Aw =-Kw (w ) K (wo) (9. 2-4)
(A LGCON,
BLGCON)

where K (Wo) is the matrix
w a

evaluated at w = w; i. e.
so

K (w ) . = K.
W.

J

(wo),

of explicit partials of K with respect to w

i= 1, 2, 3,; j = 1, 2, 3 (9. 2-5)
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1A 1 i Awi/ w I I i
i=l (see Note)

(9. 2-6)

(A LGCON,
BLGCON)

we are done; otherwise, increment wo by Aw and repeat the process until

Equation (9.2-6) is satisfied.

A rigorous discussion of the necessary conditions for the convergence of this

iteration would be inappropriate here. Suffice it to say that its success is

largely dependent upon the guess w 0 and the behavior of K .

Presently, PADS' policy in choosing w is the following:

At the first point of the trajectory,

Wo(t o ) = (10, 0, 0)

at all corner points,

w(t ) = w(t )o0+

(9. 2-7)

(9. 2-8)

and at the interior points of a subarc

w (t) = w (t - At)
O

(9. 2-9)

where At is the integration step size and w is the converged value of the

in-plane control vector. So far, this policy has been adequate, but the need

for a more elaborate one can always arise.

-12
Note: e = 10 CDC 6500 version

E = 10
-

7 Univac 1108 version
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9.3 PARTIAL DERIVATIVES OF THE NON-OPTIMAL CONTROL
VECTOR

Both the steepest descent and QL modules of PADS require the evaluation of

the total first partials of the in-plane control quantities at each point of the

trajectory. Steepest descent needs them on its backward integration in order

to construct the adjoint coefficients (see Section 12). The QL module needs

them to evaluate the Euler-Lagrange equations (see Section 16).

For non-optimal portions of the flight, it follows from the implicit function

theorem that these partials are given by

D w = -K 1 K (9. 3-1)y w y

where D is the total partial derivative operator
y

D a a a (9. 3-2)
is the matrix of exiitpartia l derivatives of K ith respect to w, and K

K is the matrix of explicit partial derivatives of K with respect to w, and Kw y
is the matrix of explicit partial derivatives of K with respect to y. Of course,

both K and K are evaluated at the converged value of w.
w y

Because the QL module of PADS employs the method of quasi-linearization

to solve the multipoint boundary value problem thatarises from the calculus

of variations, it also requires the total second partial derivatives of w with

respect to y. Differentiating Equation (9. 3-1) with respect to an arbitrary

state variable Yi yields

D * (Dy w) -Kw [ KyYi + Yi +(K + Xi) D w

i = 1, ... n (9. 3-3)
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where the j-th column of the matrix Y. is given by
1

Y.(j) = K D 'w, j = 1, ..... , n
in WYi Yi

and the k-th column of the matrix X. is given by
1

(k)
X. ( k) Ki ww

k

Dy
i
' w, k = 1, 2, 3

9-6
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Section 10

CONTROL LA WS

In Section 2. 4, the concept of the control vector U and its subset, the

in-plane control vector,

w = (T, 6E a) (10. 0-1)

was introduced. From prior descriptions of the simulations in PADS and

discussions in Section 9, it is apparent that w can be calculated explicitly

only in special circumstances. In this section, the equations corresponding

to K
3

in the algebraic constraint vector introduced in Section 9 will be

presented. The first sections describe the non-optimal control capabilities

in PADS. The later sections describe the calculations necessary for

in-flight bounded control and state function constraints.

10. 1 VERTICAL RISE AND PITCHOVER

During the vertical rise or pitchover control mode, the bank angle and angle

of attack are fully determined. The equation for bank angle is given in Equa-

tion (9. 1-2). The equation for K
3

involves k y defined in Equation (9. 1-4) is,

K
3

= (T sin (a - 6E) + L - D
b

sin a) cos 4 + m k ¥ (10. 1-1)

This equation plus associated partial derivatives may be found in subroutine

BL4 (steepest descent) and AL4 (Q. L. ).

10.2 CONSTANT ANGLE OF ATTACK

The constant angle-of-attack control mode is used for a number of different

situations in PADS. This simplest case is when the zero angle-of-attack
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control mode is chosen. The form of constraint function, K3 , in all such

cases is,

K = a - C = 0
3 a

The zero a control mode has

C = O
a

(10. 2-1)

(10. 2-2)

The most significant use of this control mode is in the steepest descent

control computation. As shown in Equation (12. 1-23), the control correction

ba is computed using the steepest descent equations. This increment is

added to the nominal control

a = aOLD + ba

This new value a is inserted into Equation (5.2-1) by letting

C = a
a

(10. 2-3)

(10. 2-4)

This control constraint is likewise used under any circumstance when the

maximum angle-of-attack limit is reached. Suppose a*' is the calculated

angle of attack either in the steepest descent or quasi-linearization program

and

Il>a (a
I I max max > 0)

Then

C = a (sign (a*))a max

(10. 2-5)

(10. 2-6)
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10.3 GRAVITY TURN CONTROL

The gravity turn control establishes a balance of aerodynamic and propulsive

forces so that there is no net force normal to the flight path. Referring to

Equations (2. 3-2) and (2. 3-3), this will occur when

X
T sin (a- 6E) + L - Db sin c = 0, ora = 0 (10. 3-1)

The form of the constraint K 3 is the same.

K3 = T sin (a - 6 E) + L - D b sin a = 0, or K 3 = aX = 0 (10. 3-2)

10.4 MAXIMUM LIFT CONTROL BOUNDARY

The maximum lift force magnitude may be instantaneously constrained by

employing this control mode. From Equation (3. 1-6), the uncorrected lift

is

u ( Lo + C )L0 q Ref

u =L q 6REF

for aerodynamic option 1 or 3

(10. 4-1)

for aerodynamic option 2. (10. 4-2)

The desired maximum lift

Cu = Lmax sign (LU)

Hence, the formax 3 function is

Hence, the form of the K3 function is

K = L - Cu uL (10. 4-4)
(AL3, .BL3)
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10. 5 UNPOWERED TOTAL ACCELERATION LIMIT

When the unpowered total acceleration limit is applied, the angle of attack

may be solved for, and the bank angle may still be optimized. The equation

for K
3

is:

K L + D -(gmax
3 max

W) = 0 or 3 = (aX) 2 + (a)
2

- (g W)2

3 (10.max
(10. 5-1)

This equation and it associated partials are programmed in.subroutines AL5

and BL5.

10.6 STATE INEQUALITY CONTROL MODES

When state instantaneous inequality functions are imposed on the trajectory,

first of all, a corner point must be included at which the bounding function

reaches its maximum value. After reaching its maximum value, the vehicle

will fly the boundary until the optimized control.will tend to tangentially fly

the vehicle off the boundary. While the vehicle is on the boundary it is

actually flying, a non-optimal control law which must be included in the

K
3

set.

There are three state inequality bounding control laws in PADS.

listed below with their corresponding inequality limit.

Control Law

q = 0

. = 0
k = 0

ey

These are

Corresponding Inequality

Maximum dynamic pressure limit

Maximum heating rate

Maximum Reynolds number

For the dynamic pressure rate, q, control law, the equation K3 is

K 3 = V ah + 2pa r= (10. 6- 1)
(A L7, BL7)
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For the heating rate limit, Q, control law,the equation is

1 15)' R 
a

P

6.3 + PaV = 0 (10. 6-2)
(AL8, BL8)

For the Reynolds number rate, R , control law, the governing equation is
ey'

K3

a Pa
vah

av
ah

2
Pa ). a-ja R~ +-- = 0 (10. 6-3)

(AL9, BL9)

where v is the viscosity.
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Section 11

POSING THE PROBLEM FOR STEEPEST DESCENT

The steepest descent method as applied to solving for the control vector U

will be described in the following steps.

A. Derive the influence functions for steering angle, arc time duration,

and initial state effects on arbitrary end boundary conditions.

B. Using these influence functions, develop the equations for the closed-

loop steepest descent algorithm.

C. Show how the closed-loop steepest descent algorithm generates

steering angle and trajectory parameter corrections to first force

the resulting trajectory to satisfy problem constraints and second

drive a payoff quantity to its approximate optimal value.

D. Show how the steepest descent solution may be transformed to

approximate the exact Lagrange multipliers for use in starting the

quasi-linearization module of PADS.

11. 1 ADJOINTS AND INFLUENCE FUNCTIONS

The equation

Y = f. {y, Ui, t. } 0 it. iT. (11. 1-1)

defines the dynamical system during arc i subject to an arc cut-off function

2i { y, wi' ti}= (11. 1-2)

which determines Ti. The control vector, U, contains the optimizing steer-

ing vector u (see Note).

i = (T, 6 E' ui)T (11. 1-3)

Note: The solution for U on arcs with suboptimal control (K(U, y) = 0) is
explained, in Sections 9 and. 10.
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Then,the optimization problem resolves into determining a set of U histories

(one per arc) and wi adjustable parameters that will optimize some function

of state cD at the terminus of an arc while constraining additional functions,

A, at the termini of that or other arcs.

If the trajectory during arc i as defined in Equation (11. 1-1) is perturbed.,

the perturbed solution can be related to the nominal result at any time t

yt = f. +af
1

(11. 1-4)

Discarding higher-order terms, this may be expressed in operator notation

as a Taylor series which, after subtracting the nominal value, becomes

af.
&6 = Dy * f'. 6y + 6u.

y a1 - b-i. 1
(11. 1-5)

where D·' fi,and af/8u. are matrices of partial derivatives (See Note).
y 

The end conditions for the ith stage are given by the equation

1i t
i

= T.
II 1I (11. 1-6)

Equation (11. 1-5) gives the perturbation effect of the state and control on the

derivative y'; however,we really need to know the effect of state and control

changes on the end condition I..

Note: D'y is a partial derivative operator which assumes the steering con-
trol vector elements are constant.
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We postulatethe desired form of this relation as

T

b6i = (k
i

) 6y t + E f6u i

where the matrix of influence functions k4 i relates the effect of changes in

the state at time t on 6b
i
. The function E relates the effect of control

changes up to time t on 6b
i
. For the sake of this discussion , assume final

time is fixed and under this stipulation take time derivatives of Equa-

tion (11. 1-7), resulting in

6'. = 0 =I.k 

( T)(q/ i)
6y it + ( )TII 6y + E (11. 1-8)

Now,substitute Equation (11. 1-5) into (11. 1-8)

i)T fau i)TkX T(yif 6y + 6u ) y + E = 0y~~ I ui + (11. 1-9)

or

Df . + X ' i) 67+(,iT i f.- T X1 6~u. + E = 0 (11. 1-10)[( )T Dy + ay + (u
i

i) 

This equation must hold for any 6 y and therefore the coefficient of 6y must

equal zero

(X) D* _( i)T1( X D * + = 0 (11. 1-11)
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or in more familiar form, take the transpose to get the adjoint differential

equations (see Note)

.9 .
1

T:~~~_ , 
(11-1-12)

Equation (11. 1-12) is used to solve for the influence coefficients subject to

the boundary condition

1

ay t = Ti
I 1

(Ti fixed) (11. 1-13)

The last two terms in Equation (11. 1-10) may be used to solve for the control

influence function

= (_ )T 6u.
a U

If the equation is integrated backwards from Ti to t, then

(11. 1-14)

E | - E|
t T.E1

t

T.

T -

(Xf ) a ru udt (11. 1--15)(11. 1-'15)

There can be no influence of control changes at Ti and therefore E Ti = 0

Note: On arcs where control is subject to the algebraic constraint,
Equation (11. 1-12) becomes

= - (D>. f. - D f. Dy K (D
\ y 1 u 1 y u

K)- kT 
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Using the following definition for the impulse response function

B. T. af
AlPi li

au.

Equation (11. 1-15) becomes

t

EIt f
T.

1

I.
A 6 6u. dt

1

If the final arc time, ri, is allowed to vary, the perturbation in the end con-

dition may be described by combining results in Equation (11. 1-7)

( T o
6 'I.i = fl) by jfo+

tIo Ti

\t.AI+.
A 1 6u. dt + \. dr.

1 1 1.
(11. 1-18)

Equation (11. 1-18) is a vector equation which contains an unknown final time

variation, dri. However, the scalar cutoff function 2i defined in Equa-

tion (11. 1-2) should determine the final time variation. Since Equa-

tion (11. -1-18) is a general form, we may describe the variation of the

scalar cutoff function in a like manner.

T
= (k i)

by t
o

+

0 .

f 'A 1 bu.dt + Qd.i
T.
1

(11. 1-19)

Since 2. = 0 and 6. = 6wi, dT. may be solved for as follows:
I. co 2'

6W. - by - f A 6u.dtL t=o T
Ti
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6 2.
1

1

i.1
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[2.
X

if. Bi. Q U2.
I1 1 l1

1

and substituting Equation (11. 1-20) into Equation (11. 1-18) yields the relation

f= i) by

1 i= Xt=o +fo

Iri

At I 6udt +
2.

1

(11. 1-22)

The term X i satisfies the adjoint differential equations if its boundary

condition is

IX
T. ~T .

1 1

i
a .

ay3y *
(11. 1-23)

This equation is programmed in subroutine ADIC operating in conjunction

with subroutine PDBC which supplies the matrix a\8i/ayITi for nonlinear

functions.

11. 2 MULTI-ARC PROBLEMS

Section 11. 1 has developed the influence functions for a single arc problem.

In this section the formulation is extended to multi-arc problems with only

terminal constraints (Reference 6).

Thus, in an i stage problem

(11. 2-1)d'i = 6.Ti
T.r i

means that all constraint perturbations are determined at the end of the ith

arc. Now examine the effect of control and parameter changes in the last two

arcs of the trajectory on the constraint perturbation.
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d = ( .1-1) Y o+ fo
T.
i-1

A 6 ui 1 dt +

T.

A 1 udt
I

X.F. )T 6
i 1 * i-1 + iwi

i--1 T|i l + i T
(11. 2-2)

Following the form of Equation (11. 1-23), the boundary condition on the

adjoints at the next to last arc corner point is:

Ii 2i- 

Ti- 1
T+
i- 1

k .Q.\T * aui- 1
(k1 1ii) y . y

Q.2i-11 -1

(11. 2-3)
(ADID3A)

i- _l

noting that

=( ji~i)T
il

Ti- I

i- 1

for correspondence with (11. 1-23).

Equation (11. 2-2) may be put in completely general terms by

the index j

0

j=l Tj

+ .

1i T! 

A u.d2.Q
A J bu.dt +

J

i-1

j=l

< i j+1 ) y 6j
Qi

T
6w

i
+ ( ii)

summing over

jr

(11. 2-5)by 0

0
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which is the general form for control and parameter sensitivities with bound-

ary conditions defined only at the trajectory terminus.

Equation (11. 2-3) is programmed in subroutine ADID3A. Arc time sensitivi-

ties are programmed in subroutine STAU.

11. 3 MIXED BOUNDARY CONDITIONS

A more general class of problems arise when constraints are not completely

defined at the trajectory terminus; that is, d* +6si Ti.

The simplest example of this is the case where the boundary condition is an

explicit function of arc times

'k i= -xF i { j ) (11. 3-1)

We refer back to Equation (11. 2-4), which now becomes

_T = y + E) 4f (11. 3-2)
i-l i-11

i- 1Ti- 1

The equation for the particular adjoint discontinuity corresponding to Equa-

tion (11. 2-3) is

A i1AT a@ a Qi

_ - 1 _

h '-1' Ti- 1

7i~I,~~~~~~~(11. 3-3)
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For the case where

i

d T. = kj=

j=l

6T.,
3

a\i = k
aTi- 1

This corresponds to three different boundary conditions in PADS:

A. Elapsed time

B. Inertial longitude

i

e = ,

j=l

LT = I + Wt- I ' . e

C. Longitude of ascending node (see Section 5).

Equation (11. 3-3) is programmed in ADID3A.

11.4 INTERMEDIATE BOUNDARY CONDITIONS

Suppose some components of the d'I -vector are completely defined at an arc

corner point - say, arc s - prior to the ith arc. This implies that the I

boundary condition vector can be partitioned

T = ()s i)T (11.4-1)

For the partitioned terms, Equation (11. 2-5) becomes

s-l

A j bujdt+ ) ( s\ S2. + T

j=l

* 6wj

Q.
3 '.-

3

+ i./, A

T
S

6 w + k
5
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s

j=l
T.
3

6y o (11.4-2)



Likewise, the boundary conditions on the intermediate constraint adjoints are

k s = a\ -PsTs ays s

T ay T ~ 2 ay T
rs

(11. 4-3)
(ADICB3)

whereas the same arc corner the remaining adjoints are adjusted as in

Equation (11. 2-3) or (11. 3-2).

iQ2s+l 

s

( "i s+l )

s
s

These equations are programmed in subroutine ADICB3.

11. 5 BRANCHED TRAJECTORY BOUNDARY CONDITIOIqS

Figure 11-1 illustrates the arrangement of a typical branched trajectory.

CR155-1

T.

'Ts

Figure 11-1. Branched Trajectory
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Ts defines the branch point and vector T is partitioned into Ti and \k.

Clearly all parameter and control changes during segment I influence both

Hi and xPk. However perturbations during segment II can have no effect on

'i and vice versa.

The adjoint boundary conditions are:

At Ti (segment III)

1. 1
ay iidi (ADICB3)

and at Tk (segment II)

Xk y (11. 5-2)

Ty Tk yk a(ADIC)

Equation (11. 5-1) is solved and the adjoints then associated with '1/i are

integrated backwards from Ti to T+. This integration is stopped and thens
Equation (12. 5-2) is solved and the adjoints associated with Wk are integrated

back to T+ at which point the Qi and Tk vectors and adjoint matrix are

merged. Adjoint discontinuities (if appropriate) are calculated using Equa-

tion (11. 3-3) or (11. 2-3) and the integration may proceed to initial time.

The equations for the branched adjoint boundary conditions are contained in

subroutine ADICB3.
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Section 12Z

CLOSED-LOOP STEEPEST DESCENT ALGORITHM

In the prior section, the influence functions for control, initial conditions

and staging parameters have been derived. In this section these influence

functions will be incorporated into the closed-loop, steepest descent algo-

rithm fo rmulation.

12. 1 USE OF INFLUENCE FUNCTIONS

We repeat Equation (11. 2-5) making the following substitutions:

S =
Tk

(12. 1-1)( xAik) y

"2k
k

Note that Q _ 1 for a timed arc cut-off; hence Equation (12. 1-1) becomes

S =
T

k

( if )T
Tk
k

Therefore, using the new notation

i

'. .o , T.j=l j

A 1 i J 6ujdt +

(12. 1-3)

12-1

(12. 1-2)
(STAU)

i

S drj
Tj

d i = ( iii)T1 BQ.\dW V 



We keep in mind that the dq
i

vector may be partitioned for branching or

intermediate constraints and now also stipulate that the last element in this

vector be the performance index, d~, as shown below:

d\f (=di/ dI. )TI (12-1-4)

We further simplify the notation of Equation (12. 1-3) by combining free initial

conditions and staging time sensitivity terms

(12. 1-5)Sq i = ( s i

y

bp = ( byto T (12. 1-6)

where

= k
y

is a scalar relation.

It

Equation (12. 1-3)then becomes

d= I T Jyo + 
i = ( XI'i~2l ) I Ij=l

j=l
If W. .. Al i

A 1 6 ujdt + S bp

It is apparent that for a given finite order dii vector there are an infinite

number of solutions to Equation (12. 1-8); moreover, if particular sensitiv-

ities are small, the associated contributions of parameter or control pertur-

bations may be negligible relative to more sensitive contributors. To

account for the discrepancies in sensitivities we assign a weight to each of

the control and parameter sensitivities.
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Let W be a diagonal control sensitivity weighting matrix. For this program,

it has two elements:

[w] = ( W) (12. 1-9)

Let Y be a diagonal parameter sensitivity weighting matrix.

Y 0 00

[Y] = YP2 
O O -0

0 0

(12. 1-10)

To account for the multiplicity of solutions to Equation (12. 1-8), we will seek

the one that forces perturbations along the direction of steepest descent to

satisfy all the constraints. To do this, the control and parameter perturba-

tions must be maximized.

The metric of control and parameter perturbations given below is to be max-

imized according to the development of Reference 7.

(dP) 2 = (|

j=l Tj

buj W 6ujdt/ - 6pT Y6p (12. 1-11)

To the (dP)2 metric we

multipliers A T. Using

functional given below.

adjoin the problem constraints through the Lagrange

variational calculus, we will maximize the resulting
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J = (dP) 2 + T

S- Si5p

Substituting Equation

gives

d/ 0 T i 0 AF-. ·I&F -d' I '.i ) by t J)ujdt
to T

j=1 '

(12. 1-12)

(12. 1-11) into Equation (12. 1. 12) and combining terms

i
J=[| (5.Tw -j _1 TAI 3u dt

3j=i j

+ T i ([ ( )' | 1 -'Ts - TS i
6

to j

(12. 1-13)

In order for J to be maximized (stationary), 6J must equal zero.

fore take the first variation. Note that W, Y and j. are constants.

6J = 0 =

j=l i

We there-

(TT T if'A2.
6u Twb(uj) + 5 (bu Wu. . - A J6(uj) dt

J 3 \ iJ

-T p) pTY p - i( 
- p Y 6(8p) - 6(6p) Y 6p - II S 6(6p), (12. 1-14)

The terms 6(buT)Wbu and 6 (6pT)Y6p are equal to their respective trans-

poses since both W and Y are diagonal matrices.
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(b 6 T)wT )W 6TW TW(6u)

But WT = W and therefore

(6 (uT)6u)T = Tw 6(Su)

Hence

( 6 (bu )wu) = 6 u W6(bu) (12. 1-15)

and likewise

6(spT)ybp =6pTy6(6p) (12. 1-16)

Substituting Equations (12. 1-15) and 12. 1-16 into Equation (12. 1-14) yields

i ( T (6u)
j i I (26u.TW6(6uj) -TT Ai JE(u dt

j= [ Tj

( 2 6 pTy + TTS'i)t( p) = o

The coefficients of 6(bu); and 6 (5p) must equal zero for arbitrary

perturbations. Thus

(12. 1-17)

5u T T t JW-1I(6T I / 2 TA Jwi 1 or 64j = 1/2W- ) 

j or 5j =

pT =1/ZTsiyS 
-1 or qpor 6p =1/2y-l(s1 )T

(12. 1-18)

(12. 1-19)

12-5



The substitution of Equations (12. 1-18) and (12. 1-19) into Equation (12. 1-8)

will allow the solution for [

) y Ito + ( / J

j- 1 j
1 C~~~~~~,3 

d1i = ( A JW- 1\ A Jt.
A1 ~~~~~

- 1/2S Y(S I l

3

(12. 1-20)

i

A I J-1A dt STviy- 1 S\i

T ]

X(d i - (X
'iQ )T T )I ) b

··~~·· .to

or, if the bracketed term is called the A matrix,

Q0 )
i = 2 A - 1 (dT~~~L=2A~~~~

Substituting Equation (12. 1-22) into Equations (12. 1-18) and (12. 1-19) gives

6u = W -(A i J)
( .2' )T

- X J 3 byA( iA- 1 if

12-6

or

(12. 1-21)

(12. 1-22)

(12. 1-23)
(MTXI)
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6 p - ~l(5 S ~)T A ( -k i (X ltP6j)T y to 12. 1-24)
(MTXI)

If the A matrix is inverted only at the initial point, in Equation (12. 1-23),

the time history of impluse response functions will yield a history of control

corrections which will under normal circumstances drive the d'I vector to

zero. However, it is advantageous to consider that as the new trajectory is

integrated, the difference in state between the nominal and new trajectory at

each arc time point does affect the end constraints, d4
i
. It is-from this con-

sideration that the closed-loop steepest descent algorithm arises (Refer-

ence 7). In this algorithm, the time history of the control contribution to A

is computed, and the parameter sensitivity contributions are included up to

the time where the parameter is adjusted. An example of this is given below

where the control correction 6u, at arc time t during arc k is shown

(A {tl)- 1

where

6y {(t = y(t) - y(t)

This equation and the corresponding one for parameter corrections

puted in subroutine MTX3A.

(12. 1-25)

(12. 1-26)

are com-

As described in Section 11. 4 and 11. 5, the dT vector may be partitioned for

intermediate constraints or branching. The A matrix is symmetric and of

the same order as the number of problem boundary conditions. If during a

12-7
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portion of the trajectory only part of the d i vector applies, the rows and

columns of A associated with the active constraints are compressed into a

new matrix, called B, before inversion. This is shown by the following:

Assume there are n problem constraints.

and m+l through n on the second branch.

onal elements of A (because of symmetry)

D corresponds element wise to the vector

A 1 1

A 2 2

Am m

Am+l, m+l

d\ 2

d\mr

dIm+ 1

There are m on the first branch

We need examine only the diag-

. Let vector D' = diag (A) then,

di'

(12. 1-27)

On the first branch of the trajectory the B matrix is defined by

Al 1

Amm (12. 1-28)
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and on the second branch,

m+1, m+l

B

A
An, n -1(12. 1-29)

Clearly, on the main trunk of the trajectory (see Figure 11-1)

B _ A (12. 1-30)

The matrix compression logic corresponding to the above description is pro-

grammed in subroutine MTX3A.

12. 2 PAYOFF IMPROVEMENT

The concept of the expandable constraint vector is used to good advantage in

PADS. During the first few iterations of a solution, only the constraint ele-

ments are contained in the d'I vector. As soon as these elements are driven

as close to zero as desired, the dkk vector is expanded to contain the first

improvement in payoff quantity, db. Assuming this payoff or some fraction

of it can be achieved on the next trial trajectory, a method is needed for

estimating the payoff improvement for subsequent trials.

As a result of asking for a dD, a history of 6u and 6p changes result which

will define the control metric (dP)2 given in Equation (12. 1-11). Substituting

Equations (12. 1-23) and (12. 1-24) into Equation (12. 1-11) and using the defi-

nition of matrix A,

(dP) (dri) A ldi. (12.2-1)
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It is now convenient to break A and Ti into minors.

of constraints

(dli) = (di'dP)T

[ ] M

n+l, n

Let n be the number

(12. 2-2)

A1, n+l

A
n, n+l

A
n+ l, n+ 1

(12. 2-3)

and

= A n . . . .
n+I, n

An+l,
n+ 1, n+ 1

(12. 2-4)

We now rewrite Equation (12. 2-1).

(dP) = (di'd) A1 (d (12. 2-5)

We can now expand Equation (12. 2-5) in terms of the partitioned matrix and

vectors.

dP = An+l n+ d + NTd.'d + (di') TMdqi.'
n+l, n+l d + N d1M + (12. 2-6)

This is a scalar quadratic equation in d~ which has the solutions.

T
-N d@.'

d n+ = n+
An+l, n+l

(12. 2-7)
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It should be noted that the initial value of the metric, dP 2 , is calculated by

the approximation

(dP)
2

= d2 A (1Z. 2-8)n+l, n+l

This approximation assumes that the remaining elements of the dq i vector

are all near zero. The equations above are programmed in subroutine

PAY0 2.

12. 3 ADJOINT EQUATIONS

The adjoint differential equations are programmed in subroutine ADEQ3A.

They appear in engineering notation in the same order as computed; that is,

an ordered adjoint vector is one row in the adjoint variable matrix. Each

row corresponds to one element in the (n+l) order dk% vector. Hence, for

the rth constraint (l<r<n+l), the adjoint variable or influence function for

velocity, V, during a particular arc s is defined for convenience as

,," =hr s
x = xv (12. 3-1)v v

Subscript partial derivative notation will be used here. For example,

yv D * = av (12. 3-2)v V av

It should be noted that the adjoint diff-zerential equations include only terms

that can be non-zero.

-(VA:v + Y X: + hvA + m X + Am + v vv4 P
Xv v v ¥ vh vm v v p

+ A.vi + sv ) (12. 3-3)

>= - 1v + hv X: + (yvX x + xY .1.34+X +:: -~Y·~ Y X:* + h X X:Y XPV X~: + Y Y : Y (12. 3-4)Y YYv Y h p
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=* ( h" + /h +mh + + h ,k + h h ., + X'h = h Y h m h"h P.h P h + h Q -5)

(12. 3-5)

< =* · -(V * X + Y X~ + m k: + p V': +m -m v m m m m 4j)

= - (V.'* +Y x .+ X

AX = - (V X + YP X + P 
p v 'Y

+ P V + k ",::)

4 h P .L))

I-LP 

A = 0

Q
= 0

(12. 3-6)

(12. 3-7)

(12. 3-8)

(12. 3-9)

(12. 3-10)

The partial derivatives of the equations of motion with respect to the states

are not presented in detail here. They are programmed in subroutine

PDY3A. The correspondence between engineering notation and FORTRAN

symbol follows rules which facilitate interpretation. These are shown in

Table 12. 3-1.
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Table 12. 3-1

EXAMPLES OF FORTRAN NOTATION
FOR PARTIAL DERIVATIVES

Engineering FORTRAN Engineering FORTRAN
Symbol Symbol Symbol Symbol

Vv VDV P 0DV

V Y VDG 1sh UDR

V h VDR Q HTDVh v

Vm VDM Qh HTDR

V VDP Va VDA

r p VD0 PDA

irE*V v~ VDU GDPH

v GDV PDPH

HDV av AVV aa, see Section 2
v av

mm MDM a AGR (ah see Section 2)

+ p PDO
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Section 13

STAGING OPTIMIZATION

The rubber-stage design optimization equations which may be employed for

Phase I sizing problems are described in this section. This type of optimiza-

tion problem has a performance index (payload), which is a function of state

values at more than one arc corner point, and as such is classed as a mixed

boundary-condition problem.

Equation (6. 4-8) indicates that the payload is simply the difference between

the final orbiter weight (burnout) and the empty structure weight.

PL = Wf - W (13-1)f e
o o

It is clear that Wf is really the weight of the vehicle at final time
o

|mi W go/ (13-2)

The orbiter structural weight is given in Equation (6. 2-2) as a function of

orbiter propellant.

e (W (.13-3)

We need to express the payload, PL, in terms of the mass (state vector

element) at corner points where the variation of mass is non-zero and an

explicit dependence of payload on mass exists.

The weight of propellant used during the orbiter burn is

W = W -Wf (13-4)
po o

13-1



At booster burnout, the booster empty weight is dropped, resulting in

W o = WBO - WeB (13-5)

where WBO is the booster burnout weight and WeB is the booster empty

weight defined by

WeB B(WPB )
(13-6)

WpB is the booster propellant weight, which in turn is related to the differ-

ence between the vehicle gross lift-off weight and booster burnout weight.

Wp = WL.O.
- WBO (13-7)

Now, substitute Equation (13-7) into (13-6):

WeB = fB(WL.O. - WBo) (13-8)

Then, substitute Equation (13-8) into (13-5):

Wo = WBO -fB(WL. O. - WBO) (13-9)

(13-9) into (13-4):

Wpo WBO fB (WL.O. - WBO) - Wf
(13-10)

(13-10) into (13-3):

Weo = f W B- fB (WL..
oL fBOB L).O. - WBO) - Wf ]

13-2
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and, finally, (13-11) into (13-1):

PL =Wf - fo WBO fb (WL. WBO) - Wfo]o~~L o. BO O.
(13-12)

(PAYLOD)

This is what is needed to relate payload to the weight at the end of orbiter

burn and at the end of boost.

In order to construct the adjoint initial conditions or transversality, condi-

tions at the injection point, the explicit partials of payload with respect to

mass are required.

At orbiter injection

am T. = (1 + fo') gr

where

f fo

fo aw
Po

(13-13)
(PDBC)

(PDBCQL)

At booster burnout

aP
L

am TBO
(13-14)

(ADJUMP)

where

aOf
fB aw

Po

Note that WL. O. is invariant and fo, fo' fB and fB' are evaluated at nominal

values of W and W , respectively.
P0 PB

13-3
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Section 14

LAGRANGE MULTIPLIER TRANSFORMATION

This analysis shows how the matrix of adjoint variables can be transformed

into an approximation for the Euler-Lagrange multipliers. These trans-

formation equations are actually a useful by-product of proving that in the

limit, the steepest descent solution satisfies the necessary conditions of the

calculus of variations for the Mayer problem.

We need to rephrase the problem of steepest descent in a manner similar to

that presented by Denham and Bryson in Reference 8. We subdivide the con-

straint vector and its corresponding sensitivities into d.i and d0 and use as

a goal the optimization of dO. We need to adjoin the expression for dP 2 and

the constraints. The resulting expression is [(see Equation (12. 1-12)].

dO =(S')T p +

ij jO

| A budt
j-1 j

T

1~~p
i

+ .[(dP)2 _

o k i"j

Ti

6u.dt
J

bpT YfP - (6uj)T Wbujdt
j=l Tj

14-1
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If this expression is regrouped

d= [(S= )T VT(Sgi)T _k(
6
p)TY] 6P

+ f 7 (A 3 - TA i _ P (6 uj)T )6u.dt

T 2

j=l Tj

+v Td + (dP) (14-2)
1

We take the first variation of dO

6(d () 4S( )T V T(SFi)T - t(6 p)T Y]6(6P)

j=l Tj

i o n Q- TQ

+ v 6(daPi) + 6(dP)2 (14-3)

(dP) is a prespecified quantity; therefore, its variation will be zero.

Likewise, dT i is considered fixed and its variation is zero. For arbitrary

variation of 6u. and 6p, Equation (14-3) can only equal zero if
J

(S - VT(sxi )T -2 L (bju.TY = 0 (14-4)
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and

d _ T T (14-5)
A v -v A - 2i(6u.) W 0

The parameter and control corrections are then

(
6
p)T = [(s) T T ] (14-6)

(6u) T = [1A\i - T i 1W1 (14-7)

We may rewrite Equation (14-7) as (see Equation 111 1-16)

~T OT T N.i D fW 1

(6u.) + V (14-8)

From the calculus of variations, we know the necessary condition that

T
-X D * f = O (14-9)

u

Here, k is the Euler-Lagrange multiplier on the exact extremal. On the

solution, 6u. is likewise identically zero. We may then infer that the linear
J

transformation

T T
iagToo apoimatv o the) (14-10)

is a good approximation of the Euler-Lagrange multiplier.
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By substituting Equations (14-6) and (14-7) into Equation (14-2) we may

calculate v . In terms of the expressions used in Section 12. 2 [see Equa-

tion (12. 2-3)].

T =[N] T[M] (14-11)

Henc e,

wh (he j) _d [NIT [M] ( niQonj) (14- 12)

where the adjoints are all functions of time and N and M are evaluated only at

the beginning of the trajectory (at the end of the adjoint solution). This com-

putation is performed in subroutine TRAN3. The stored adjoints are trans-

formed and stored on sequential file for use later in the quasi-linearization

portion of the program.
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Section 15

STEEPEST DESCENT NUMERICAL ANALYSIS TECHNIQUES

This section of the report discusses some of the more important numerical

analyses and convergence techniques employed in the steepest descent portion

of PADS. Other aspects of the programming techniques used are found in

Volume II.

15. 1 NUMERICAL INTEGRATION, STORAGE RETRIEVAL,
AND STEERING COMPUTATION

The numerical integration method used in the steepest descent algorithm is

standard fourth-order Runge Kutta, as described in Reference 9. The same

method is used for both forward trajectory and adjoint differential equation

integration. RKTA3A and RKTB3A are the integration subroutines.

The basic integration cycle includes evaluation of the derivative twice at the

mid-compute interval and twice at the end of the compute interval. During

the integration of the adjoint differential equations, it is essential that data

for the state vector be accurate at each evaluation of the adjoint derivatives.

This is necessary because the adjoint derivatives are functions of the state

on the nominal, f, trajectory. To accommodate this requirement, the

adjoint integration has specially adjusted integration intervals to match up

exactly with the time integration intervals of the nominal trajectory. An

additional consideration arises at the mid-compute interval since the state

is only an estimate there. To get a better representation of the state at the

mid-compute interval, the following equation is used (ENTRY CORVAR in

Subroutine REU3).

l4 +.fly. + f(y5) 11)Y1/2( f + L 4 At (15. 1-1)+(o
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where Yl/2 is the state vector at the beginning of an integration interval,

f {Yo is the derivative at that point, and fYo+ f(yo ) -t )is the derivative
evaluated at an estimated mid-point state.

During the forward trajectory integration, the following data are stored at

each mid- and end-integration interval in preparation for the adjoint integra-

tion: (1) y, the state vector; (2 ) a, 4, the steering vector; (3) i, the arc

number; (4) ip, the phase number; (5) K1 flag, the option flag that tells which

governing equation is to be used for thrust; (6) K
3

flag, the option flag that

tells which governing equation is to be used for or; and (7) arc, phase, and

elapsed time.

During the integration of the adjoint differential equations, the forward tra-

jectory data are retrieved at each mid- and full-interval to permit the

calculation of the necessary partial derivatives. As the adjoint integration

proceeds, a number of quantities are stored in preparation for computing

the control and parameter corrections on the next trial trajectory. These

include the adjoint matrix, X 1iij; the impulse response matrix, Ai ij; and

the A matrix excluding parameter contributions (see Equations (12. 1-21)

and (12. 1-22)).

At the mid-compute interval of the adjoint integration, no refinements of the

adjoint variables are made. However, the impulse response matrix is

refined before storing it. The reason for this selection will be given in the

next few paragraphs.

The optimized steering computation on the trial trajectory using retrieved

data from the adjoint solution is a very critical aspect of the program. The

technique that is used was developed in the course of trying a great number

of different approaches and has proved to be the most stable and efficient.

At the beginning of a compute interval at arc time t, the following informa-

tion is available.

A. y(t), the current state vector (trial trajectory)

B. Yold(t), the old state vector (nominal trajectory)

15-2



C. x i~J(t), the adjoint matrix

D. Uold' Pold' the old steering and parameter values (nominal

traj ectory

E. S I, parameter sensitivities for parameters that have not yet been

perturbed

F. A 1i (t), the impulse response matrix.

Equation (12. 1-23) is to be evaluated. The first calculation performed is

6y(t) = y(t) - Yold(t) (15. 1-2)
- (MTX)

Then, if any parameters are still to be perturbed

[SS] =1 ' Y- (Sfi) T (15. 1-3)
(MTX)

At this point, the A and [SSJ matrices are simultaneously added and com-

pressed according to the extent of the dP i vector

B(t) = A(t) - [SS] (15. 1-4)
(MTX)

Then B(t) is inverted using a symmetric matrix inversion method (Refer-

ence 10).

Using the compression logic again, the augmented constraint vector is

calculated.

RR(t) = d. - by(t) (15. 1-5)
(MTX)

The first part of the calculation provides the TR vector.

TR(t) = B(t)' RR(t) (15. 1-6)
(MTX)
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At arc time t, the control may be calculated as

u(t) uold(t) + W- (5 1-i 7ju ( = Uold(t) + W A (t) TR(t) (15. 1-7)
(MTXI)

It is necessary to calculate the control at the mid-interval and end-interval.

The vector TR(t) is not recalculated. The equations are therefore

A~t) at -l A'Ii2j t At
u = u ( + ) = W ld(t + -- ) TR(t)

and

u(t + At) = Uld(t+ At) + W 1 AIiJ(t + At) TR(t) (15. 1-8)

As mentioned in Section 12. 1, the vector TR is recalculated only if the so-

called closed-loop control mode is operating. Once the integration marches

past the input elapsed time where the feedback stops. the recalculation of

TR simultaneously stops and TR remains constant for the remainder of the

tr aj ec tory.

Optimized arc time corrections are calculated up until the arc time is actu-

ally changed. At this point, the sensitivity is dropped from the S' matrix

and its contribution to [SS] is eliminated.

15.2 ARC CUT-OFF TECHNIQUE

It is essential that the arc j cut-off function, Qj), be as numerically close to

zero as possible and likewise that the state vector at T j be precise.

When

j = t -j (15.-1)

obviously the satisfaction of 2j = 0 is trivial; however, when

j = Gj(y(t))- Qj (15. 2-2)
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where Q* is the desired cut-off and G is an arbitrary nonlinear function of

the relative states, some special considerations are necessary.

At time t during arc j, one can estimate the value of G at the next integration

interval

G%(t + At) = Gj(t) + Gj(t) a t

Gj(t + At) > Q'"*,

(15. 2-3)

(15. 2-4)

then the cut-off condition is detected. It remains to get a good estimate of

the integration interval required to satisfy

Let

Gj(t + At') = Ql'j

H = Gj(t) - Gj(t - At)
J J

(15. 2-5)

(15. 2-6

and

H' = *j - Gj(t)

We may get a second order approximation of At'. Let

'H'
A' = + +-

H

A2 = H
(H)j

(15. 2-7)

(15. 2-8)

(15. 2-9)

C = A2(A') (15. 2-10)

If
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B = A'(1. - A2)

and

A= 1. -B

(15. 2-11)

(15. 2-12)

Then

CH
At' = A (t -At) + B(t) + . - t

Gjft}

(15. 2-13)

This equation is programmed in subroutine DTF3.

The integration will then march out an interval At' at which time it will be

further refined.

Let

K = Gj{t + At') - G(t) (15.2-

K' = j - Gjt + At' (15.2-

R' = K (15. 2-
K

B'

C'

D'

= (R')
2

(3 - ZR')

= 1 - B'

= R' (R' - 1)2

14)

15)

16)

(15. 2-17)

(15. 2-18)

(15. 2-19)

and

E' = (R')2 (R' - 1) (15. 2-20)
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Then, the refined time estimate for T is

D' E'
T = C't + B'(t + At') + K G.t G. t (15. 2-21)

J J

The entire state vector is refined through a similar third-order interpolation

formula (Hermitian interpolation). This is programmed in subroutine

YREF3.

Experience with this algorithm has been very good with the exception of one

type of situation. Suppose inequality [see Equation (15. 2-4)] does not detect

the cut-off. This would mean that at the next compute interval, the integra-

tion would have to march backwards. This is not permitted owing to limita-

tions of storage retrieval logic and therefore the cut-off equation will not be

satisfied. The only remedy for this occurrence is to reduce the integration

interval size to minimize the likelihood that it will happen.

The fact that previous time-point data are used for this algorithm makes it

imperative that more than two integration intervals be used in each arc.

15. 3 SOLUTION CONVERGENCE LOGIC

The basic sequence of convergence in the steepest descent program is

A. Integrate first nominal trajectory

B. Satisfy problem constraints

C. Improve payoff only after problem constraints are satisfied

D. Continue payoff improvement until predicted improvement is

very small or iterations exceed maximum number.

15. 3. 1 First Nominal Trajectory

The first nominal trajectory uses an input control history (on cards) or a

prior stored solution-control history (see Volume III). -This trajectory is

integrated and its state and control are stored as described in Section 15. 1.

Upon completing the terminal arc cut-off, the nominal constraint misses are

calculated and the constraint vector dko i is established.
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15. 3. 2 Satisfaction of Constraints

One or more iterations are normally required to satisfy the problem

constraints. After the first nominal trajectory is completed (iteration 1) the

first adjoint solution is integrated and stored. Using this stored data, the

program will attempt to drive all of the constraint misses d'i to zero. If

these misses are relatively small to start with, they may be driven down to

a smaller size or even less than tolerance levels. If, on the other hand,

they are large, the control computation may diverge or the constraint misses

may get even larger. In the event that divergence occurs, the asked-for

constraint corrections will all be halved and another trajectory, using the

same stored data, will be integrated. The prime criterion for a satisfactory

constraint pass is

Id Ii | s Tol (15. 3-1)
(TEST)

where Tol is a vector of input constraint tolerances or

I t~d 1,Pi| s |~d,,I~i1 ~(15. 3. 2)
old (TEST)

This means that all elements of Id'i J have decreased since the last nominal

trajectory. If some have increased and others decreased, the final test is:

n d4?i. 2 nd%2
1 (d~~~~~i\ ~~~(15. 3-3)

(-1 < (TO) old (TEST)

where n = number of constraints.

This means that the sum square metric of relative constraint misses has

decreased since the last trajectory.

If after five halving trials these tests are not satisfied, the program will

stop and go on to the next case.

If, on the other hand, the test in Equation (15. 3-1) is satisfied, payoff

improvement may begin.
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15. 3. 3 Payoff Improvement

Once the test in Equation (15. 3-1) is satisfied, the d\Ti vector may be

expanded to include d6, the payoff improvement.

The first payoff improvement is either an input quantity or can be estimated

from an input of the expected final value of performance index O.

Subsequent program iterations will attempt to get further payoff improve-

ment. If an asked-for dqb is very large, control divergence or payoff

divergence may occur or constraints may be violated. In the event that any

of these occur, d4 will be scaled down by 1/4T- and the metric (dP)2 will

be halved.

At each new payoff improvement iteration, the predicted dd is calculated

using Equation (12. 2-7). The new do is compared with the old value to see

if special convergence acceleration is appropriate. If so, the (dP)2 metric

is scaled up to tend to give larger payoff improvements per iteration. This

payoff improvement logic is programmed in subroutine PAY02.

When the predicted dt is smaller than an input minimum payoff improvement,

the program will integrate the solution trajectory. (When a QL solution is

flagged, the transformation of adjoints to Euler-Lagrange multipliers

(Section 14) occurs before the solution trajectory integration. )
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Section 16

CONTROL VECTOR SOLUTION - OPTIMAL CONTROL

This section treats the determination of the optimal steering angles a and 4
in the QL trajectory module of PADS.

Sections 16. 1 through 16. 5 establish the definitions of various quantities and

notational conventions. In Section 16. 6, the calculus of variations is applied

to the trajectory optimization problem to derive the necessary conditions for

optimality. Among these conditions are the optimal control laws for 4 and a

which are discussed in greater detail in Sections 16. 7 and 16. 8. Finally, in

Section 16. 9 the effects of control and state variable inequality constraints

are discussed.

16. 1 THE STATE VECTOR IN THE QL MODULE OF PADS

If the method of quasi-linearization were amenable to problems with variable

end-points, the state vector in the QL module of PADS would be the same,

except for order, as it is in the steepest descent module. However, to cir-

cumvent the problem of variable end-points, QL makes use of a transforma-

tion that incorporates an additional state variable.

The transformation runs as follows: Let z denote the original state vector

and suppose that z conforms to the differential constraint

dz
dt g (t, z, U), to o t s tF (16. 1-1)

where t is the independent variable (time), U is the control vector, tF is

unknown, and g is a known vector function. Define

T = tF -to (16. 1-2)
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and take

x = (t - to)/T (16. 1-3)

It follows that x(tF) = 1 and x(to ) = 0, regardless of the value of tF. Let us

define a new state vector y*: as

y -(x) = z(t(x)), 0 < x s 1. (16. 1-4)

Then, by the chain rule of differentiation,

dy* dz dt dz -5
dx- dt dx - dt 0< x 1.

Finally, we construct the actual state vector that QL treats by appending the

variable T to the vector y*. Call this vector y. Then the quasitime deriva-

tive of y is well defined as

dy = f(x, y, U), 0 x s I (16. 1-6
dx-

where

dy
i

dz.
dy _ dz (16. 1-7dx dt

if Yi is a member of y'- and

dy.
= 0 (16. 1-8dx

if =
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As a consequence, the state vector in'QL is defined as

y = (V, Y, i, h, p, a, m, T, Q)T (16. 1-9)

For a two-point problem - i. e. , a one arc problem - the variable T is simply

the duration of the arc in seconds. In the next section, we will discuss the

ramifications of multi-point problems.

16.2 DESCRIPTION OF THE MULTI-POINT PROBLEM

In the course of flying the trajectory, should anything happen to cause the

right side of Equation (16. 1-1) to be discontinuous, then we have a multipoint

problem. The point at which the discontinuity occurs is called a corner

point.

PADS recognizes four types of corner points: (1) branch points on the late

side of which Equation (16. 1-1) takes on more than one value; (2) end points

which are the last points of branches; (3) initial points which are the'first

points of trajectories; and (4) intermediate points which are-corner points

that do not fall into any of the above categories. Since an intermediate point

is not a branch point, the right side of Equation (16. 1-1) will have exactly

one value on the late side of an intermediate point.

If a problem has a branch point, it is called a branch problem. Presently,

PADS can handle no more than one branch point in a trajectory, and the

right side of Equation (16. 1-1) can have only two values on the late side of

the branch point.

The portions of the trajectory between the various corner points are termed

subarcs. PADS assumes that all subarcs in a given trajectory are time-

wise contiguous to some other subarc. In other words, there are no time

gaps between any subarcs.

Figure 16. 2-1 depicts a typical branch problem in PADS. The subarcs are

numbered sequentially so that for a branch problem the first subarc of the

second branch is assigned the next number after the last subarc of the first

branch.
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CR155-1

N1TH ARC ARC

ARC

N2 TH ARC

INITIAL POINT

Figure 16.2-1. Branch Subarcs

As in the two-point problem discussed in Section 16. 1, the QL trajectory

module transforms the time variable for the multipoint problem to the

quasitime variable x. In this case, the transformation runs as follows: Let

the corner points of the multipoint problem be ordered as follows:

t < t < t t 2... < tN (First Branch)
o| <2+1 1 N2N2 I < tN (Second Branch)

(16. 2-1)define

For 0 + x _< 1, define

T (x) = t - t (16. 2-2)

for 1+ < xS 2, define

T(X) = t2 - tl (16. 2-3)
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In general, for all I except I = N 2 +1 and for (I- 1)+ _ x _ I-, define

T (X) = t
I

tI_
1

(16. 2-4)

For I = N 2 +1 (branch problems only) and N2+ < x _ (N2+1), define

T (X) =tN2+ -lt (16. 2-5)

Hence, for (I-1) + x _ I-, T(x) is the duration of the Ith subarc.

16. 3 THE EQUATIONS OF MOTION

In PADS, there are two different sets of equations of motion: the standard set

which applies over most subarcs and a special set which applies only on

vertical rise or pitch over subarcs. As a result, the equations of motion

themselves are subarc-dependent, and, hence, for the multipoint problem,

Equation (16. 1-6) becomes

dY fI (x, y, U), (I-1)+ x< I (16. 3-1)
(NLDRV)

where the subscript I on the right side of the equation indicates the subarc-

dependency.

16.4 THE STATE BOUNDARY CONDITIONS

A full description of the various boundary conditions in PADS that the state

can be made to satisfy is given in Section 5. It is sufficient to note here that

all of the state boundary conditions fall into two broad categories: state

initial conditions and state target conditions.
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Let \I' be the vector of all state boundary conditions for the entire multipoint

problem. The QL module assumes that no state boundary condition involves

the state at more than one corner point. Hence, we can partition \I into

I=

P1

'PN +11

'PN
z

NZ+l1

q N
3

I initial point

Iintermediate points

} branch point

Iintermediate points (16. 4-1)
(MAGIC,
BNDRY)

I end-point of first branch

}intermediate points

) end-point of second branch

The vector /o contains the state initial conditions at x = 0+ 1 contains the

state initial conditions at x = 1 and the state target conditions at x = 10. In

general, at the intermediate point I, 'PI contains the state initial conditions

at I+ and the state target conditions at I-. 'N
1

contains the initial conditions

at N 2 +, the initial conditions at N 1 + and the target conditions at N1-. 4N
2

contains the target conditions at N 2 - and 'PN 3 contains the target conditions

at N 3 --

Since the QL state vector y has nine components, then the vector qI must have

fewer than 18N 3 components; otherwise, no optimization could occur.

16.5 THE CONTROL VECTOR

The control vector U in the QL module is defined as

U = (T, 6El a, Q)T (16. 5-1)
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There are several subvectors of U that have names of their own. The vector

u = (a, )T (16. 5-2)

is termed the steering vector. On any given subarc, only the steering angles

a and 4 may be optimized. The vector

p = (T, 6 E)T (16. 5-3)

is called the propulsion vector. Neither component of p may be optimized on

any subarc. The vector

w = (T, 6 a)T (16. 5-4)

is called the in-plane control vector. As will be indicated later, the bank

angle, 4), can always be determined independently of the vector w. This will

be true both when q) is optimized and when it is not. As a consequence, the

determination of the vector w will receive our greatest attention.

In any case, in order to evaluate Equation (16. 3-1), it is necessary to deter-

mine the vector U at every point of the trajectory. Let K be the vector of

algebraic constraints which may totally or only partially determine the

vector U, i. e.,

K = K (x, y, U) = 0 (16. 5-5)

If K has four components, then U is completely determined and the vehicle is

said to be undergoing non-optimal control. If K has less than four com-

ponents, then U is only partially determined by K, and the vehicle is said to

be undergoing optimal control. The minimum number of components K can

have is two, in which case, both a and 4 are free to be optimized.
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Clearly, both the number of components and the equations assigned to the

components of K are subarc-dependent. Hence, Equation (16. 5-5) should be

rewritten as

KI = K I (x, y, U) = 0 (16. 5-6)
(CONTRL)

To completely determine U during optimal control, the indirect method of

the calculus of variations is applied in the QL module of PADS. This will be

discussed in detail in the following sections.

16.6 DERIVATION OF THE NECESSARY CONDITIONS FOR AN
OPTIMAL SOLUTION OF THE MULTI-POINT PROBLEM

Multi-point trajectory optimization to which PADS addresses itself is an

example of the problem of Mayer. The problem statement runs as follows:

We seek the state vector y(x) and control vector U(x) that cause the payoff

function

D = D (y (N 3 )) (16.6-DR)
(BNDRY)

to experience a minimum subject to the differential constraints

dy - f (x,, y, U) =x N
3TX- I 3XYtU (16. 6-2)

(NLDRV)

and the algebraic constraints

K
I

(x, y, U) = 0, 0 < x < N
3

(16. 6-3)
(CONTRL)

and the fewer than 18N 3 boundary conditions

(16. 6-4)
(MAGIC,
BNDRY)
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Any valid target condition in the program can legally serve as a payoff. The

fact that QL always minimizes the payoff should not concern the user, for if

the maximization of the indicated payoff is desired, then QL minizes the

additivo inverse of the payoff. For example, suppose the maximization of

m(N3 ) is desired. Then QL minimizes -m(N3 ).

There is one exceptional payoff function in the program that involves the state

at more than the last point of the last branch. It is called the payload function

and it is functionally dependent upon the booster and orbiter burnout masses;

i. e.,

= ) (m (N1), m (N3-)) (16. 6-5)
(BNDRY)

This payoff applies only for Phase I sizing problems and will be treated

separately.

The approach to the problem stated above that the QL module of PADS

employs is to adjoin the differential constraints and boundary conditions to the

payoff to form the so-called augmented functional

Ni3 
J = i+M 1+ xp (d

-
_ fi) dx (16. 6-6)

I=1 I-1

where M and k are vectors of Lagrange multipliers. In QL, the X vector

is defined as

A = (XV, y , Xpy , X,, k m AT.' Ia XQ) (16. 6-7)

and is referred to as the costate vector.

Clearly, if y(x) and U(x) satisfy Equations (16. 6-2) through (16. 6-4), then

Equation (16. 6-6) becomes

J = ·D (16. 6-8)
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Hence, the object of the QL module is to determine the y(x) and U(x) that

satisfy Equations (16. 6-2) through (16. 6-4) and cause Equation (16. 6-6) to

have a minimum value.

Before considering this problem, however, let us make use of the partition

of I introduced in Section 16.4 in Equation (16. 6-6). We then get

N 3 N 3 I

J = D+o t 0 + VLI +PI 1 Jo
I=1 I=1 I-1

X (. - f) dx

where the vector M has been partitioned into the subvectors [o, B1 ....

LN 3 in the same manner as Bf.

The first necessary condition for the minimization of J is that

6J = 0 (16. 6-10)

where 6J represents the total variation of J. Expanding Equation (16. 6-10)

we get

bi a[(Z/ay(N 3- 6y(N 3 ) + [lo * [a wO/ay(o+)] 6y(o0+)

+ II [a IP/ay(I+), a Iy/y(I -) y(I)- )
IES

1 + NN1 by(N+)
AN . P [aPN /aY(N 2) N 1/aY(N1) N 1 / .)] 6 y(N +)

by(N l -)

'N2 [aN 2/y(N 2-)] 6Y(N2-) +N '[aqN 3/ Y(N 3-)] by(N3-)

+ 1 6 _ ( - fI) dx

N fI X

(16. 6-9)
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where

S = {I: 1 < I < N 3 and I t N 1 , N 2 , N 3 } (16. 6-12)

The last term of Equation (16. 6-11) is the sum of the total variations of N 3

definite integrals. Let us consider only one of those variations - say, the Ith

one. Furthermore, let us denote dy/dx by y'. Then, we have

~II I I

I-1 I-1 I-1 Y

- f .f bU dx (16. 6-13)

I-i

Noting that 6 (y') = (by)', the first term on the right side of Equation (16. 6-13)

can be integrated by parts to yield

I I

DI = [x . ]I 6y |J d-y dx- f | ' fI ~Y dx- f | f1 U dx
-1I-1 I-1 Y I-1

(16. 6- 14)

where D I denotes the expression on the left side of Equation (16. 6-13).

Let the vector a- consist of those steering angles that are free to be optimized

on the Ith subarc and let the vector q consist of the remainder of the U vector.

Then

( = -) (16. 6-15)

As pointed out in Section 16. 5, if K
I

has four components, then a is the

empty vector and q = U. If K I has two components, then o = u and q = p. If

K
I

has three components, there are two possibilities depending on which

steering angle is to be optimized. If 4 (the bank angle) is to. be optimized,
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then C = (c) and q = w. If a is to be optimized, then or = (a) and

q = (T, 6 Et' )T.

In any case, because of Equation (16. 6-3), there is an implicit function k so

that

q = k (x, y, c) (16. 6-16)

(see Reference 11) and, as a consequence, Equation (16. 6- 14) can be

rewritten as

~~~I II

x f=x fA k- f 6 dx - fI ya 6 dx

I- 1 I-1 Y

I-1 q q
(16. 6-17)

After collecting the terms under the integrals in Equation (16. 6-17) on 6y

and 6ao, D
I

becomes

D [ =[ 6y] + XA (f, +f kqY )]
I -1 -1

i f *+x kf +fq) 6a dx (16. 6-18)
I-1

Since 6y and 6b appear under the integral sign, both of the integrals in Equa-

tion (16. 6 - 18) must vanish in orderto satisfy Equation (16. 6- 10). Hence, by the
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Fundamental Lemma of the calculus of variations (Reference 12) the Euler-

Lagrange equations.

(d) + ' I + f ) 0(I-1) x I-

Y q

(16. 6-19)
(N LDRV)

and

- X I +f
I

k) = 0, (I- 1)+ x I-
O' q

(16. 6-20)
(CONTRL)

must be satisfied at each point of the Ith subarc.

Assuming that Equations (16. 6-19) and (16. 6-20) are satisfied., then Equa-

tion (16. 6-18) reduces to

D I [ . 6y]I
I-1

(_(I-) 6y(I-)
:'l . -(?- Pf+)

and the last term on the right side of Equation (16. 6-11) becomes

N
3

I N
3

1=x I-) =1 
I=l I-1 I=1

/ x(I-) 
1- xrr +)

6Y(I) \
(TI ?y) (16. 6-22)

Still assuming that the Euler-Lagrange equations are satisfied on every sub-

arc, Equation (16. 6- 10) in its expanded form becomes, after collecting terms

at the corner points,

6J = o = E 6y(o+) + E Y(I+) _ EN
0 1 I ~f- S

6y(Ni+) )

6y(N1 )

+ EN 6y(Nz-) + EN 6y(N3-)
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where E o , E 1 , E
2

, etc. are the row vectors

E = o' [ao/ay(o+)] - x(o+)T (16. 6-24)
(COSTAO)

2EI = ~I' *[a PI/aY(I+) I ai/ay(I-) [X(I+)T -X(I-)TIES (16. 6-25)
(COSTAI,
INTRPT)

ENI = N 1= [aN l/ Y(N2 ) alPN l/aY(NI) NI Nl/aY(N 1)]

- [X(N2+)1 (N I+) -(NT] (16. 6-26)
(COSTAB,
BRAN PT )

N _2 = Ni 2 aL 2/ay(N2 -) + Z J (N22ZEN N 2 IN 
(16. 6-27)
(END PT)

EN
3

= N 
3

[ 3 ] +](N 
(16. 6-28)
(END PT)

Equation (16. 6-23) is called the transversality equation. Since the state

variations at the corner points are independent, the transverality equation

will be satisfied only if E 0, E 1 , ... , EN3 all vanish. Hence, the problem is

to determine the values of Fto, [l1 .. N
3

that cause Equations (16. 6-24)

through (16. 6-28) to vanish.

Toward this end, we note that Equations (16. 6-24) through (16. 6-28) are of

the general form

T
i A+b = 0
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where A is a matrix of partial derivatives and b is a row vector. For

example, at the intermediate point I, p. in Equation (16. 6-29) is jI'

b -_[X (I+)T I _A(I-)T] (16. 6-30)

and

A = [ /ay(I+) a y(
Ia I/(I) (16. 6-31)

The number of rows in p. and A equals the number of boundary conditions that

apply at the corner point. The number of columns in A and b is 9 for initial

and end points, 18 for intermediate points, and 27 for branch points. Let us

denote the number of rows and columns in A by m and n, respectively. Pre-

sumably, the m rows of A are linearly independent row vectors.

Should m = n, the solution to Equation (16. 6-29) is simply

T -1
L. = -b A (16. 6-32)

However, when m < n, I. is underdetermined, and, as a consequence., some

additional boundary conditions must be added. These new conditions are

called transversality conditions and they involve both the state and the costate.

The ontogeny of the transversality conditions runs as follows. Since the m

rows of A are independent, they span a proper subspace of En. Take B to be

any set of n - m row vectors so that AUB spans the entire space En. This

generates an invertible n by n matrix.

A = (16. 6-33)

compute

T
(16. 6-34)

16-15



Then, if 6 = 0, it follows that

TO) [A ] TA + OTB = .TA = -b (16. 6-35)

Hence, to satisfy Equation (16. 6-29) when m< n, we must determine y(x) and

A(x) so that I, evaluated in Equation (16. 6-34) vanishes.

In general, some transversality conditions will exist at each corner point.

So we define the vector e to be the transversality conditions over the entire

problem, i. e.

0o

01

N1

ON +11

N 2

ON2+l

(16. 6-36)
(MAGIC,
BNDRY)

For those problems in which the special payoff (Equation (16. 6-5) applies,

all we need do is add the partial of D with respect to m(N1 - ) to the right side

of Equation (16. 6-26).

To summarize the development to this point, recall that we began with a set

of differential constraints [Equation (16. 6-2)]

dy f(x, y, U) = 0
dx I (16. 6-37)

(NLDRV)
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to which we have had to add the differential constraints [Equation (16. 6-19)]

+ x (f + fI k) = 0q
(16. 6-38)
(NLDRV)

We also had a set of algebraic constraints [Equation (16. 6-3)]

K I (x, y, U) = 0 (16. 6-39)
(CONTRL)

and to these we have added the algebraic constraints [Equation (16. 6-20)]

- x (f fIf k = 0 (16. 6-40)
(CONTRL)

Finally, to the boundary conditions [Equation (16. 6-4)]

v = 0

we have had to add the transversality conditions [Equation (16. 6-36)]

e = 0

The terms k and k. in Equations (16. 6-38) and (16. 6-40) are, according to
y

the implicit function theorem (Reference 11)

-1
k = -[Ki] Ki

L'IqJ Iy
(16. 6-43)

(ALGCON)

kr = -[K q] KI, (16. 6-44)
(ALGCON)
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Thus, the calculus of variations has transformed our original optimization

problem stated by Equations (16. 6-1) through (16. 6-4) into the multipoint

boundary value problem stated by Equations (16. 6-37) through (16. 6-42).

16.7 THE OPTIMAL BANK ANGLE

Substituting Equation (16. 6-44) into Equation (16. 6-40) yields

A.·f K I KI = 0-0 q
(16. 7-1)

(CONTR L)

If X (the bank angle) is a component of e, then the 4 -component of Equa-

tion (16. 7-1) is

= 0 (16. 7-2)
(CONTRL)

However, as an examination of the various component candidates of K
I

in

Section 10 will verify, when h is a component of a, none of the candidates is

explicitly dependent upon 6. In other words, when Oea, KIO = 0. Hence,

Equation (16. 7-2) simplifies to

- = . f = - XyY A -x = 0 (16. 7-3)

Plugging the expressions foryq, and dd; into Equation (16. 7-3) and simplifying

yield.s

Xy sin 4 - X, cos /cosy = 0 (16. 7-4)

This equation has two solutions which are supplementary. Take

(16. 7-5)

(16. 7-6)
(CONTRL)
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cos ~ = Xy cos y/C (16. 7-7)
(CONTRL)

sin X = -k /C (16. 7-8)
(CONTRL)

cos ~ = -Xy cosY/C (16. 7-9)
(CONTRL)

are solutions to Equation (16. 7-4). One solution will place X in the first or

fourth quadrant and is therefore termed the belly-down solution. The other

will place 4 in the second or third quadrant and is consequently called the

belly-up solution.

If both solutions are admissible, then we apply Pontryagin's maximum

principle to guide us in the choice of the best solution (Reference 13).

According to this principle, if the functional J in Equation (16. 6-9) is to

experience a local minimum, then the Hamiltonian function as defined, by

H = X' f
I (16. 7-10)

(CONTRL)

must experience a maximum. Hence, our choice of d will be the one which

yields the largest value of H.

One other important observation is to be made about 1. The optimal bank

angle is independent of the other components of U. As pointed out in Sec-

tion 9. 1, the same is true of the non-optimal bank angles. Hence, on any

subarc, we can solve for the bank angle explicitly, and the problem of deter-

mining U therefore simplifies to determining the subvector w.
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16. 8 THE OPTIMAL ANGLE OF ATTACK

If a (the angle of attack) is a component of o-, then the a-component of

Equation (16. 7-1) is

- x'(f K IK = 0 (16. 8-1)
(fI - fIq K)

a q (ALl)

In view of the observations made in the preceding section, Equation (16. 8-1)

simplifies to

- 'fI - fI KI] = 0 (16. 8-2)
a p (ALl)

regardless of whether or not 4 is optimal. Of course, K
I

should now be

viewed as having only two components.

At this point, we must consider what might happen to Equation (16. 8-2) vWhen

the total acceleration limit is encountered at some point in the Ith subarc

while the vehicle is still in the atmosphere. Just prior to hitting the limit,

Equation (16. 8-2) is simply

-h A f IK(2) K= 0 (16. 8-3)
\ a E El /(ALl)

where the subscript I has been dropped because it is understood and the

superscript (2) indicates the second component of K. At the point where the

limit is met, however, K( 1 ) t 0, and Equation (16. 8-2) becomes

- f fT I f6E) K() K ) = 0 (16. 8-4)

f6E[(2) K(2) K(2
L i°E

16-20



Unfortunately, Equations (16. 8-3) and (16. 8-4) do not necessarily yield the

same value of a at the point where the limit is met. A discontinuity of a,

moreover, necessitates the introduction of another corner point. Worse yet,

the value of T may exceed its maximum and, thereby require the imposition

of the total acceleration limit as a control constraint on a.

To avoid these difficulties, Equation (16. 8-3) is taken as the only form of the

optimal control law for a.

16. 9 CONTROL AND STATE VARIABLE INEQUALITY
CONSTRAINTS

There are three first-order state variable inequality constraints and three

control constraints. In both cases, the angle of attack is chosen so that the

constraint value is satisfied. Also, in both cases, the assumed underlying

unconstrained control equation is the optimal control law [Equation (16. 8-3)]

In the case of a state variable inequality constraint (SVIC), the constrained

portion of flight must begin on the late side of a corner point because this

portion of flight begins by matching the constraint as a boundary condition

(Reference 14). Thereafter, the angle of attack will follow the SVIC until the

optimal a resulting from Equation (16. 8-3) causes the time-rate of change .of

the SVIC to be negative. For example, suppose the SVIC is the dynamic

pressure, q. At the corner point, the constraint is matched; i. e. , q = qmax

Thereafter, if

dq (aopt) > 0 (16. 9-1)
dt opt

then a is chosen so that

dq
EF (a)= 0 (16. 9-2)

but if

dt (a pt) 0 (16. 9-3)

then a is used.
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Once off an SVIC, the program cannot go back on without the introduction

of another corner point.

Ordinary control constraints, on the other hand, do not require a corner

point and, consequently, the constraint can go on and off at will.

For both SVIC's and control constraints, at the point where the switch from

constrained to optimal control occurs, it should. be clear that Equa-

tion (16. 6-37) is continuous. However, the continuity of Equation (16. 6-38)

is not as obvious. In order to prove continuity, we first observe that at the

switch point, both the optimal and the constrained angle of attack satisfy

- A/ - f K_ K =0 (16. 9-4)
P P

On the early side of the switch, Equation (16. 6-38) is

where C is the constraint. On the late side of the switch, Equation (16. 6-38)

is

T f1 K f

whIf Equations the(16. 9-5) andt. On9-6) are to be equal, then we must show that-38)

Af K1 K = (fi fI) I _ PII_ aj ( RJ ) (16. 9-7)
P P Y I 
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Since K and C are nonsingular, the inversion in Equation (16. 9-7) is given
p a

by

K ,K -1.
_ -I? _ _a

p i aKI

(Kp -K C1 C-

-C 1 Cp (Kp- Ka CaCp)
-

1I-a p C P

-I -1
I - K1 K (C - C K 

1
K)

I -k C apC K K 1 J )
I a p p a

(16. 9-8)

Multiplying the inverse by the row vector X · (f f ) yieldsIfa)

IK !K 1

X (fp f.)-E p - _

(16. 9-9)

Substituting Equation (16. 9-4) into Equation (16. 9-9) yields

x · (f 1 f )
Pi a

K1K-' K -1-

C IC
Pl aI

f - f K 1 K C ) (K
p p p a a p

f K
-

1

P P Kp -K C -1 C
p

) (K
(1 ct

-1I 1
-K G C p 0

a- a- p /I

-K C-1C )-
a a p m

= . f K 1 O]

(16. 9-10)
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Plugging Equation (16. 9-10) into Equation (16. 9-7) yields the desired result.

Hence, both the state and costate come off the constraint surface tangentially.

16. 10 SUMMARY

In view of the results of Sections 9. 1 and 16. 7, regardless of whether the

bank angle is optimal or non-optimal, we can always evaluate it explicitly.

As a result, the problem of evaluating U reduces to solving for w. Section 9. 2

discussed this problem when a is non-optimal. Section 16.8 shows how

Equation (16. 8-3) fills in for the missing component of K I when a is optimal.

Hence, we can view K
I

as always having three components regardless of

whether a is optimal or non-optimal. However, if we do, we also must view

K
I

as being explicitly dependent upon the costate; i. e.

K
I

= KI (x, y, A,) = 0 (16. 10-1)
(ALGCON)
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Section 17

QUASILINEAR SOLUTION OF THE MULTI-POINT
BOUNDARY VALUE PROBLEM

Recall that the calculus of variations transformed the original optimization

problem into a multi-point boundary value problem whose solution will

indirectly yield a local minimum of the payoff function (Section 16. 6). The

boundary value problem itself falls into the category of nonlinear first-order

ordinary differential equations.

The numerical method employed by the QL trajectory module of PADS is

known as quasi-linearization. This is an iterative technique which is actu-

ally an extension of the Newton-Raphson iteration to function spaces. Since

a proof of the convergence of the iteration is beyond the scope of this docu-

ment, the ensuing sections are intended as an exposition of how the method

works in PADS rather than why.

A simple two-point problem is discussed in Section 17. 1. A number of

observations are made about the nature of the quasi-linear solution and the

multi-point problem is then addressed in Section 17. 2. The subsequent sec-

tions discuss the significant mathematical and numerical problems and tech-

niques that are attendant on the solution of the multi-point problem.

17. 1 THE TWO-POINT PROBLEM

Consider the system of first-order nonlinear ordinary differential equations

dx - F(x, Y w), 0 x 1 (17. 1-1)
(NLDRV)

where

T T T
Y (y .x)
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and where

T T _
F = (f (x, y,w) -. (fy + fqk)) (17. 1-2)y qy

and where, according to Equation (16. 10-1), w is subject to the algebraic

constraints

K (x, Y, w) = 0 (17. 1-A3)
(ALGCON)

together with the boundary conditions

( T* eT) = 0 (17. 1-4)
(BNDRY)

Suppose Y is a solution to Equations (17. 1-1) through (17. 1-4), then provided

F is twice continuously differentiable with respect to Y, Equation (17.1-1) can

be written as a Taylor series

d (xZ+ HOT (17. 1-5)

where Z = Z(x) is an element in the same function space as Y and W satisfies

K (x, Z, W) = 0 (17. 1-6)

and HOT denotes a second-order remainder term.

The idea behind quasi-linearization is if Z can be chosen so that HOT is

negligible, then the nonlinear system in Equation (17. 1-1) can be approxi-

mated by the linear system

ds = F (x, ZW) +[]Y =Z (s - Z) (17. 1-7)
(LINDRV)
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Because such a system is linear in s, it will have a solution of the form

18

s(x) = p(x) + I hi(x)ci

i=l

(17. 1-8)
(NOMINAL)

where p(x) is some particular solution of Equation (17. 1-7)

(p - Z) (17. 1-9)
(LINDRV)

h1 (x), hZ(x), . . ., h 18 (x) are a set of linearly independent solutions of the

homogeneous differential equation

dh.

aY= 1 (17. 1-10)
(LINDRV)

and cl, c 2 , ... , cl 8 is any set of scalars that causes the equation

T('i, '(s) (s ) = 0 (17. 1-11)
(BNDRY)

to be satisfied.

Since HOT has been neglected, however,. s will not generally be a solution

to Equation (17. 1-1). As a result, an iterative process is employed wherein

Z is replaced by s in Equation (17. 1-7) and a new s is computed.

If this process converges; i. e. , if for any positive £, a positive integer M

exists so that

0 x 1 l Sm(X) - Sm+l(X) < f (17. 1-12)

17-3
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whenever m > M (m denotes iteration number), then it can be shown that

it converges to a solution of Equation (17. 1-1). Moreover, it converges

at a rate that is quadratic (Reference 15).

Since the particular solution p(x) can be any solution of Equation (17. 1-7),

we establish the following advantageous conventions in choosing the initial

value p(O). Some of the boundary conditions in (pT · eT ) will be initial

conditions on the state or costate. For example,

m(O) - 50,000 slugs = 0 (17. 1-13)

For each such condition, the state or costate variable involved is said to be

fixed (known). All state or costate variables that are not fixed are said to

be free (unknown). For all fixed variables, we set the appropriate compo-

nents of p(O) to the known values. Thus, continuing with our example, the

seventh component of p(O) is set to 50, 000. For all free variables, the

appropriate components of p(O) will be set to the corresponding components

of Z(0). For example, suppose XV(0) is free, then

P 1 0 (0) = Z 1 0 (0) (17. 1-14)

Of course, on the first QL iteration, Z(0) is the value of the initial arc at

x = 0+. On subsequent iterations, however, as we have already noted

Z(0) = sm (0) (17. 1-15)

The homogeneous solutions hl(x), h 2 (x), ... , h 1 8 (x) must be independent.

Hence, we use the following convention in choosing their initial values

1I if i=j

hi(0) = 6i. = (17. 1-16)
1 1 0 if iij (SALVE)
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As a result of this convention, if H is the matrix whose columns are

h.(x), i=l, . . ., 18, then

H (0) = I (17. 1-17)

the identity matrix. Moreover,

s(O) = p(O) + H(O)c = p(O) + c (17. 1-18)

Since the values of the scalars c1 , c
2
, ... , c18 are chosen so that Equa-

tion (17. 1-11) holds and since, by convention, p(O) is chosen so that it

satisfies the initial conditions in Equation (17. 1-4), it is clear from Equa-

tion (17. 1-18) that c. is trivially zero if Yi is fixed. Hence, we can throw

out those homogeneous solutions that correspond to fixed states.

Thus the following becomes the actual convention for the homogeneous solu-

tions: For each free variable Yj introduce a homogeneous solution hi(x)

whose initial value is

h. (0) = 6. (17. 1-19)
1 ij

In actuality, then, the matrix H(x) will have 18 rows and up to 18 columns,

depending on the number of free variables, n.

Equation (17. 1-18) also conveys the meaning of the remaining c's. They

are the necessary perturbations to the initial values of the free variables to

cause s(l) to satisfy the target conditions in Equation (17. 1-4). Differen-

tiating Equation (17. 1-8) by a particular ci indicates the meaning of the

homogeneous solutions.

s(x) = x hi (X) (17. 1-20)8c. 

These solutions represent the sensitivity of s(x) to a unit perturbation at the

initial point of the corresponding free variable.
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In view of Equation (17. 1-15), it is clear that one necessary condition of

convergence in the sense of Equation (17. 1-12) is that

lim c = 0 (17. 1-21)
e--.0

Hence, as an alternate definition of convergence, we use

n

E Icil= 0

i=l

(17. 1-22)

17.2 THE MULTI-POINT PROBLEM

For a multi-point problem Equations (17. 1-1) through (17. 1-3) become

dY
dx = FI(X' Y, w), I

F I = TIFT I fi(x, y, w)T 

- 1+< x < II = 1, 2, ..., N3

- x (fly + qfI ky)

K
I

(x, Y,w) = 0 (17.2-3)
(ALGCON)

respectively.

More important, the following conventions are adopted for the particular and

homogeneous solutions.

If a variable is continuous across a corner point; i. e., if

(17. 2.4)Yi (I+) - Yi (I-) = 0

is one of the boundary conditions in Equation (17. 1-4), then the correspond-

ing component of the particular solution also goes across the corner

continuou sly,

17-6
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(NLDRV)
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Pi ( I +) = Pi (I-) (17. 2-5)
(SALVE)

If the mass state variable experiences a discontinuity of known or computable

magnitude

m (I ) - m (I-) + 5000 slugs = 0 (17. 2-6)

for example, then the seventh component of the particular solution experi-

ences the same discontinuity

P7 (I
+

) = P 7 (I ) - 5000 slugs (17. 2-7)

If a variable Y. is free on the late side of a corner point, then set
J

pj(I+ ) = Z.(I+
) (17. 2-8)

(SALVE)

and introduce a new homogeneous solution hi(x) whose initial value

is given by

h.(I + ) = 6..
1 13

at x = I+

(17. 2-9)
(SALVE)

This is perfectly legal as long as we remember that the scalar for this

homogeneous solution cannot be perturbed to satisfy target conditions prior

to x = I+ .

(Because of the last rule, the number of homogeneous solutions increases

monotonically as we progress from one subarc to the next. )

If a variable is fixed on the late side of a corner point; i. e. if

Y (I+) (known 0
i ( - (value 0 ( 17. 2-10)

is a boundary condition in Equation (17. 1-4), then set
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Pi (I ) ( = knowni ~~value 
(17. 2-11)
(SALVE)

and zero out the i row of the matrix H(I+). This is valid because the ith

variable at x = I has become insensitive to perturbations of free variables

prior to x = I+.

On a branch problem, if

Y (N) - Yi (N 1 ) = 0 (17.2-12)

is a component of Equation (17. 1-4), set

(17. 2-13)
(SALVE)

If

m (N) - m (N1) + 5000 slugs = 0 (17. 2-14)

is a component of Equation (17. 1-4), set

( )P7 : (N;) - 5000 slugs (17. 2-15)

If the mass is distributed between the two branches; i. e., if

m (N2)+m (N)- m (N1) 0
2 1 1) 

(17. 2-16)

is a component of Equation (17. 1-4) set

P7 (N2) = m(N)- m (N1)
(17.2-17)

If a costate is distributed between the branches; i. e., if there is a trans-

versality condition such as

v(N)+V ( N)- NV (N) = 0 (17.2-18)
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in Equation (17. 1-4), then distribute the corresponding component of p. For

example, Equation (17. 2-18) would result in

P10 (N2) = 10 (Ni) - plo (N+) (17. 2-19)
(SALVE)

The distribution of a costate results from the state going across the branch

point continuously to both branches.

The above conventions are chosen because they force

s(x) = p(x) + H(x)c (17. 2-20)

to automatically satisfy all of the initial conditions in Equation (17. 1-4). As

a result, the determination of the c's is based solely on matching the target

conditions in Equation (17. 1-4).

17.3 RECOGNIZING THE INITIAL CONDITIONS ON THE COSTATE

Since the transversality conditions e are derived numerically, the program

must have some means of recognizing those transversality conditions that

represent initial conditions on the costate.

Let us first consider the initial point x = 0+. At this point, Equa-

tion (16. 6-34) becomes

T " -1
= X(o0+) A

O (17. 3-1)
(COSTAO)

.th TSuppose 9 is the j component of 9 Then
O ( 0o)

[ - ] i (17. 3-2)
(COSTAO)
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where

I 
A· i

isthth co n -1
is the 3 column of A

0

(17. 3-3)
(COSTAD)

A"' = 6 =
0 if k 

1 if k = I

for some ', 1 s f ! 9, then 0 is of the form
O.

1

= x (+)
I0 l

(17. 3-4)

and the transversality condition is

X (0o+) = 0 (17.3-5)

In other words, A P is fixed at the initial point.

In fact, because the state variables at the initial point can only be fixed or

free, the same will be the case for the costate variables.

Next, consider the intermediate point I. At this point Equation (16. 6-34)

becomes

I(f) = [I(*- AI ] AI

=th T T hen
Suppose 0i. is the t component of (I ) Theni

1~

I = [x(+) .- ] [AI ]A

(17. 3-6)
(COSTAI)

( 17.3-7)
(COSTAI)
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Let us denote the top nine entries of

by S and the bottom nine by T. Then, if T = 0 and S = 6ki for some I,

1 < I 9,

8I = (I +) (17.3-8)
1

represents the fixed initial condition on Xi. If S = 6ki for some Q,

1 s I s 9, and T = S, then

Ii = X (I + ) - Al(I')0 G+)(17.3

represents the continuous initial condition on Xa.

Finally, consider the branch point N 1 . At this point, Equation (16. 6-34)

becomes

/([N// / T .-

1 (COSTA

3-9)

-10)
AB)

Suppose 0i is the jt component (T 0T 1 ) Then

i= [A(N) * (N) - (N )] [AN ]a . XN+ (N+ X ( A" (17. 3-11)
(COSTAB)

Let us denote the top nine entries of

[AN' ]
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by R, the middle nine by S, and the bottom nine by T. Then, if T = S = 0

and R = ki for some Q, 1 s i s 9,

8i.= X (N) (17. 3-12)

represents the fixed initial condition on XA(NI). If T = R = 0 and S = 6kf,

(17. 3-13)i = N(N )

represents the fixed initial condition on (N1 ). If S = 0 and R = T = k'

then

pi =A 2(N+) X(N; )8 h 2- ( 1 (17. 3- 14)

represents the continuity initial condition on X£ between the trunk and the

second branch. If R = 0 and S = T = 6bkl then

(17. 3-15)X ,(N) - XI(NI )ei , I 

represents the continuity initial condition on XA between the trunk and the

first branch. Finally, if R = S = T = 6bk, then

(17.3- 16)i = X (N2)+ X (N) - XI(N)
i 2 1(1) 

represents the costate distribution initial condition on k .

The fixed, continuous, and costate distribution conditions are the only

transversality conditions recognized as initial conditions on the costate. All

other transversality conditions are treated as costate target conditions.

17.4 SOLVING FOR THE C'S

Having integrated the particular and homogeneous solutions forward to the

end of the trajectory, we must then determine the values of the scalars

c
1
, c

2
, . .. , c that.cause the target conditions in Equation (17. 1-11) to
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be satisfied. The method employed is the well-known Newton-Raphson

interation for systems of equations.

Let us assume that Equation (17. 1-11) has been reduced to target con-

ditions only. Further, let us take the value 0 as an initial guess for the

vector c. Define

(i) (i+l) c(i)

where the superscript indicates the iteration number, and

c (
0

) = initial guess = 0 (17.4-2)

According to the method of Newton-Raphson, the increment in Equa-

tion (17.4-1) is given by

AC(i) = [ aqu'a C ]1o C~)1 (17.4-3)
80ae/ac c=c(i) (NEWCS)

Clearly, as the vector of target misses on the right side of Equation (17.4-3)

approaches zero, so will the increment Ac(i) provided, of course, that the

matrix of partial derivatives is non-singular.

To see how the target misses and partials in Equation (17.4-3) are actually

evaluated, consider the target conditions lI at the corner point x = I. Sup-

pose that prior to the point x = I, a total of m I homogeneous solutions has

been introduced. Let

CI = (ci' c2. .... ) (17.4-4)

be the vector of multipliers for these homogeneous solutions. In general,

of course, the vector

c = (cii c 2 ,. ., c)T (17.4-5)
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of multipliers for all of the homogeneous solutions in the problem will have

more components than c
I
. Indeed

1 C C · .C C c C
N

3

If we let

HI(x) = [h l() h2 (x) :hi()]

(17.4-6)

(17.4-7)

(17.4-8)s(I-) = p(I-) + HI(I-) c
I

and, by the chain rule of differentiation,

a I/8c I= (a*I/as(I-)) (8s(I-)/8c I)

= (a8II/as(I-)) Hi(I) (17.4-9)
(INTRPT, BRANPT, ENDPT)

Of course, the partial derivatives of *I with respect to those c's in Equa-

tion (17.4-5) that are not in Equation (17.4-4) are zero.

Since the transversality conditions EI at x = I are numerically derived, their

partials with respect to the c's are numerically approximated by divided for-

ward differences. For example, if c. is one of the components of the vector

CI r then

CI, I/ (aC(s(ci+ac )- I +(s(cC))) aci (17.4-10)
(INTRPT, BRANPT, ENDPT)

Of course,

s(C
I

+ Ac i ) = s(cI) + Acih.(I-)
i I i~~~~ 1

(17.4-11)
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Some of the transversality conditions in 1I may involve both sides of the

corner point. Hence, the partials with respect to the c's introduced on the

late side of the corner point must also be approximated by divided

differences.

17. 5 EVALUATION OF THE SYSTEM JACOBIAN

In order to numerically integrate Equations (17. 1-9) and (17. 1-10), we

must evaluate the system Jacobian

RaFl 

Recall that

and

YT =(yT T)

FT = ( fT _ (f + f ky)

(17. 5-1)

(17. 5-2)

Let

y' = f (17. 5-3)

and

T
,T = A-' (f + f k )

Y qy

Then

aF]Y=Z ay'/ay ' ay'/dA 1
LY: Z ]ay a} r15y F 7-aJy = z

(17. 5-4)

(17. 5-5)
(NLDRV)

* Naturally, the first step in evaluating the Jacobian is to solve Equa-

tion (17. 1-3) for w. This problem has already been discussed for nonopti-

mal control modes in Section 10.2. Nevertheless, let us see what the four

submatrices turn out to be when both a and d are non-optimal.
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When a is non-optimal, q = w. Hence

Y' = f + f k + f 
aY y W y y

(17. 5-6)
(NLDRV)

As we noted in Section 10. 1, there are only two non-optimal bank angle

modes. For the mode in which

4 = O (17. 5-7)

the term by vanishes. For the vertical rise or pitchover mode, the term

f, vanishes. Hence, Equation (17. 5-6) simplifies to

ay? = f + f k
dY y w y (17. 5-8)

(NLDRV)

Since q =w, Equation (16.6-16) becomes

w= k(x,y) (17. 5-9)

As a result, the term k in Equation (17. 5-8) can be viewed as
Y

awk =
Y ay (17. 5-10)

According to Equation (16. 6-43)

ayw - K
ay [Kw (K + K 1* cp (17. 5-11)

(ALGCON)

When a and q are non-optimal, Equation (17. 5-4) becomes

= - X. (f +f aw =Y ayway/ = wdy. ay

':<Recall that 4, is an explicit function of y.,
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A number of shortcuts become apparent. First, compute ay'/ay by means

of Equations (17. 5-8) and (17. 5-11). Then compute A' by means of Equa-

tion (17. 5-12). Since wand h do not depend onX,

ay' = (17. 5-13)
(NLDRV)

and

ax = _ ay' a
ax LaY J

(17. 5-14)
(NLDRV)

Moreover, the matrix aX'/ay is symmetric. Observe first that

axi a ay' ' *a
aj dy ay( d yay .ayj )y. ay.j dyjay

iJ 1 J 
(17. 5-15)

( 17. 5- 16)ay' = f + f aw
aYi Yi wayi

and, consequently,

a2y' a f + f dw
ayjayi ayj - Yi 

yi af 2= a + waW+f a W
a Yj yj ayi Way aay +--+ fa

= 2
= + aw + + f aw aw + f a w

YiYj w dyj+ + fw. dyiwy aYjay i

The right side of Equation (17. 5-17) is symmetric with respect

Hence

(17. 5- 17)

to Yi and yj.
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a2y' a2y'
a yay. ayjayi (17. 5-18)

which implies, by Equation (17.5-15), that

[ ay ]ij ay Jji

So we need only evaluate the upper triangular portion of aX'/ay.

Of course, we still must evaluate the terms a 2w/ayjayi for j > i.

evaluation has already been discussed in Section 10.3.

(17. 5-19)

This

If X is optimal and a is non-optimal, Equation (17. 5-6) does not reduce to

Equation (17. 5-8). Of course, Equation (17. 5-4) still holds, but Equa-

tions (17. 5-12) through (17. 5-14) and (17. 5-19) no longer hold. In this

case

a yl
ax = Ox (17. 5-20)

(NLDRV)

ki =- Q +f aw .- + f aw)
a xj Yi w ay i ) ij Yi fw(,a yj ) * 

Of course, aA'/ay is no longer symmetric.

axi = f aw+
a Yi YiYj fwYi aj fyi yj

[ 

+ (y ~aw \aw __2w ].x
+ fwws-yj + fw y Yi ayj ay i

Wway W~6'j) a, w f

(17. 5-21)
(NLDRV)

(17. 5-22)
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If both 6 and a are optimal, then q = p. Let K* be the first two components

of K in Equation (17. 1-3). In other words

(17. 5-23)

The third component of K is given by Equation (16. 8-3).

becomes

Equation (17. 5-4)

= - X . (f + f py)
Y Py

(17. 5-24)
(NLDRV)

where

Kr sl·1
py= - [KJ K (17. 5-25)

(ALGCON)

In this case, the matrix ay'/ay is still given by

y' = f + f -aw + f6 y
y y w ay

as in Equation (17. 5-6), and the matrix aw/ay is still given by

-1
- K (K + KO Q 

Y 
(17. 5-27)

(ALGCON)

as in Equation (17. 5-11). However, the matrix ay'/la is now given by

ay' = f + ft d
ax w a A

a- K 1 (K
x

+ Kt ; )ax W X+K 6N)
(17. 5-29)

(ALGCON)
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K-:- =

aw
ay -

(17. 5-26)
(NLDRV)

where

(17. 5-28)
(NLDRV)



Moreover, the matrix aX'/8X is given, element-by-element, by

X j (f +f P) 6 ij (f yu +f U p )- X3 hi P ii3yu u j Yi

where, of course, u = (a,O).

needless to say, asymmetric.

(17. 5-30)
(NLDRV)

The matrix 8a'/ay is rather complicated and,

It is given, term-by-term, by

aPyi

Yi P aYj

= [ flYiYj

aw

Y+ fiwayj + fYi6 Yj + (fpyj
+wf a~w/p +f ai.

pwayj Yi P aYjJ

(17. 5-31)
(NLDRV)

where

aPyi

ayj

-{A 3f X [K I [] -1
aK

Yi

aYj
· X

= ] ( [K p] K= K' :I

I p 1' ayj I P Y

+ K aw 
pw ayj[ K (( KPYj

LK 1K
P Yi

-K
YiYj

-YiK
YiwaYj

( 17. 5-32)
(ALGCON)
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ayj

3

aK
Yi

ayj
3

a ( K - i)
-5 Yj I ·p YKi



In case a is optimal and 6 is non-optimal (i. e., b = 0), then Equa-

tions (17. 5-24) through (17. 5-32) still apply, but the terms by and 6 A vanish.

17.6 METHODS OF INTEGRATION

Another major step in the procedure described in Sections 17. 1 and 2 is the

integration of Equations (17. 1-9) and (17. 1-10). This is accomplished by

means of a fourth-order Adams-Moulton scheme with a standard fourth-

order Runge-Kutta starting procedure.

Let F(x, s) denote the right side of Equation (17. 1-9) or (17. 1-10).

for the Runge-Kutta starting procedure, we have

Then,

s(x+h) = s(x) + [k + 2k2 + 2k3 + k4 ]
(RKUTT1,

(17. 6-1)
RKUTT2)

where h is the step size and

k F[x, s(x)],
(RKUTT1,

(17. 6-2)
RKUTT2)

=h hk = F x + , s(x) + h
2 1 2 2 k 1 ] (RKUTT1,

(17. 6-3)
RKUTT2)

k
3

= F[x + 2, s(x) + k
2

],, = [,, h2 (RKUTT1,

k4 = F[x+ h, s(x)+ h k3 ]
(RKUTTI,

(17. 6-4)
RKU TT2)

(17. 6-5)
RKU TT2)

This starting procedure is applied over the first three intervals of each

subarc. The integration over the remainder of each subarc is accomplished

by the Adams-Moulton process. This is a so-called predictor-corrector

technique in which the predictor is given by

sp(x+h) = s(x) + h [55kl - 59k2 + 37k3 - 9k4 ] (17. 6-6)
(MADAMS)
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once again, h is the step size, the subscriptp denotes predictor
p

= Fix, s(x)] (17. 6-7)
(MADAMS)

= F[x - h, s(x - h)] (17. 6-8)
(MADAMS)

= FCx - 2h, s(x - 2h)] (17. 6-9)
(MADAMS)

= FCx - 3h, s(x - 3h)] (17. 6-10)
(MADAMS)

The corrector is given by

s (x+h) = s(x) + 7 [251f + 646k 1- 264k + 106k 3 - 19k4 ]
c 7201 1 3 4

(17. 6-11)
(MADAMS)

where the subscript denotes corrector and
c

f = F [x + h, sp (x+ h)] (Reference 9)

The accuracy of the corrector can be improved by means of the following

optional iteration. Let the superscript i denote the iteration number. Then,

as the reader may verify,

(i+1)s (x+h) = s(i ) (x+h) + hc c 720 [2 5 1 kw - 2 5 1 - (17. 6-13)
(MADAMS)

where i-l, 2, ....

f(i) = F [x+h, s(i) (x+h)]
c

(17. 6-14)
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where,

and

k
2

(17. 6- 12)



and

s ( 0) (x+h) = s (x+h) (17. 6-15)
C p

We remark, in passing, that the error in the integration is proportional to
4 --1 -4

h 4 . Thus, if h c 10 , the error will be on the order of 10

- 4

On the other

hand, the computation time varies inversely with the size of h. Hence,

cutting the step size in half will double the run time.

17.7 INTERPOLATION OF UNIVARIANT AND BI-VARIATE
TABULAR FUNCTIONS

In order to expand Equation (17. 1-1) into the Taylor series in Equa-

tion (17. 1-5), Equation (17. 1-1) had to be twice continuously differentiable

with respect to Y. Since Equation (17. 1-1) is functionally dependent upon

both univariant and bivariate tabular functions, it is necessary to use

interpolating functions for these tables that are twice continuously differenti-

able. Two such interpolating functions are the cubic and bicubic spline

functions. The former is used for univariant data and the latter for

bivariate data.

The cubic spline employed in PADS is the so-called natural cubic spline.

Its derivation is given in Reference 16 and runs somewhat as follows. Let

x be the independent variable and let u (not to be confused with the steering

angles) be the dependent variable. Suppose the values of u are tabulated

over the mesh

A:x 0 <XI < ... < < x N
(17.7-1)

Then, the table is given by the ordered pairs

(xO, u O ), (x
1
, u

1
), ..., (xN, uN) (17.7-2)

Let M. denote the value of u"(x) at the ith mesh point, i = 0, 1, ..... N, and let

h xi - Xi 1' i = 1,..., N (17. 7-3)I1 - '
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If we suppose that the second derivative is linear over each interval in the

me sh, then

u"(x) = M.
i-1

x. -x x - x.1 xxi_
h. ±M x. <x <x.1 h. -1 1

1 1

Integrating Equation (17.7-4) twice and evaluating the constants of integra-

tion yields the results

(Xi - x)

6h.

+ i-1

+xM.+ M. (x - 1-_ 1)3
1 6h.

1

M. h\ x-x/Mxh 2 \
1- M ih X. XMX - X iIl
i -i ih6 h.

1 1
(17. 7-5)

(SPLINE)

(x - X)2

u'(x) = -M. i x2
i-1 2h.

1
+M (x 1 2h.

1

u. M. -M.
1 1-1 1 1-1

h. 6 1
1

(17. 7-6)
(SPLINE)

for x. x < x..
1-1 1

The functions u(x), u'(x), and u"(x) defined by Equations (17.7-4) through

(17.7-6) will be continuous at the mesh point x. provided the quantities
1

M0 , M 1 , MN satisfy the relationships

h. h. +h. h.
1 i+ M+ +l +l M

- Mil + 3 i Mi+l

u -u u. - u.ui+1 i i -1 i-
h. h.i+1 1

For i = 1, 2, . . ., N-1. At the end points we are free to close the values of

Mo and MN. We make the choice of M 
N

= 0 This implies a straight-

line extrapolation outside the mesh.
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(17. 7-4)
(SPLINE)

u(X) = Mi1-1

and

(17. 7-7)



Define

hi+l
i + hi+ 1I i+l

(17. 7-8)
(MOMENT)

(17.7-9)
(MOMENT)1 i = - X.1 1~~~~

and

[(ui+ 1 - ui)/hi+] - [(u- u i l
) / h

]

d.= 6I hi. + hl
1 i+1

for i = 1, 2, . . ., N- 1. Then Equation (17.7-7) can be written as

iM.l + 2M. + A.M. = d.
I 1-1 1 1 1+ 1

for i = 1, 2, . . . , N- 1.

Equation (17.7-11) together with the imposed end conditions on

yield the linear system

0

1

2

0 0 0

0 0 0

. . .0 0 

2

[*N-1

0

XN-2 

0 N- 

0 1
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Mo

M
1

M 2

MN_ 2

MN- 1

M
N

(17.7-10)
(MOMENT)

(17.7-11)

Mo and M
N

0

dl

d2

dN-2

dN- 1

O

(17. 7-12)
(MOMENT)

1

0ll

O

O

O

O

0

2

0

0

0

0

0

0



which is solved for M 0 , M
1
, ... , MN. These quantities are then stored

along with the table given in Equation (17. 7-2) so that the functions u(x),

u'(x), and u"(x) given by Equations (17.7-5), (17.7-6), and (17.7-4),

respectively, can be rapidly evaluated later on.

The bicubic spline function employed in PADS is a natural extension of the

cubic spline discussed above to functions of two independent variables. An

excellent derivation of the bicubic spline interpolating polynomial has been

given in Reference 17 and we will not attempt to duplicate it here. Suffice

it to say that PADS's and Reference 17 agree in every detail except for the

following:

Let the dependent variable u(x, y) be tabulated over the rectangular grid

A :x < xl < ... < x
Nx o 1

(17. 7-13)

Ay : Y < ...'' < YM

In other words, we are given

uij = u (x i , yj), i 0, 1, ... N; j 0, 1, ... , M (17. 7-14)

Where Reference 17 uses

p = x (x, y)
x

q = u (x, y)
Y

(17.7-15)

(17.7-16)

and

s = uxy (x, y)xy (17. 7-18)

PADS uses

p = u (x, y)xx (17.7-19)
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(17.7-20)q = u (x, y)
YY

s = u (x, y)xxyy

and while Reference 17 assumes one is given

pij = Ux (xi, yj), i = 0,N; j = 0, 1, ... , M

qi i = , 1,...,N;j = uO,My(X 1...

and

sij = uxy (x i , yj), i = 0, N; j = 0, M

PADS arbitrarily takes.

(17. 7-2 1)

Pij = xx (Xi' yj) =

qij = yy (x i , y j ) =

sij = Uxxyy(xij)

0, i = 0, 1,...,N; j = 0, M

0, i = 0, N; j = 0, M

These are the bivariate analogs of the univariant end conditions M = M
N

= 0.

The quantities Pij at interior points of the grid are determined by univari-

antly spline-fitting uij along each grid line in the x direction. Similarly,

the quantities qij at interior points are determined by univariantly spline-

fitting uij along each grid line in the y direction. Finally, the quantities sij

17-27

and

(17.7-22)

(17. 7-23)

(17. 7-24)

and

(17. 7-25)
(BLICO)

(17.7-26)
(BLICO)

(17. 7-27)
(BLICO)

O, i = O, N; j = O, 1, . . ., M



at interior points are determined by spline-fitting Pij along each grid line

in the y direction.

The coefficients of the bicubic polynomial in PADS are given by an equation

that is similar to Equation 10 of Reference 17, but in PADS the A matrix is

given by

1 0

-1/h -h/3

0

0

1/2

'0 0

1/h -h/6

0

-1/(6h) 0

0

1/(6h) 

(17. 7-28)
(BLICO)
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A(h) =
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